답안 #625691

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
625691 2022-08-10T17:06:06 Z Clan328 메기 농장 (IOI22_fish) C++17
53 / 100
1000 ms 212068 KB
#include "bits/stdc++.h"
using namespace std;
 
#define int long long
struct Fish {
    int col, row;
    int weight;
};
bool operator < (const Fish& a, const Fish& b) {
    if (a.col != b.col) return a.col < b.col;
    return a.row < b.row;
}
 
// sub1 - 3 {{{
// fishes are on even columns -> build piers on odd columns
// & catch all fishes
int sub1(const std::vector<Fish>& fishes) {
    int res = 0;
    for (const auto& fish : fishes) {
        res += fish.weight;
    }
    return res;
}
 
// fishes are on first 2 columns
int sub2(int n, const std::vector<Fish>& fishes) {
    std::vector<int> zeroes(n);  // prefix sum of fish weights at column == 0
    std::vector<int> ones(n);    // prefix sum of fish weights at column == 1
    for (const auto& fish : fishes) {
        if (fish.col == 0) zeroes[fish.row] += fish.weight;
        if (fish.col == 1) ones[fish.row] += fish.weight;
    }
 
    std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin());
    std::partial_sum(ones.begin(), ones.end(), ones.begin());
 
    int res = ones.back();  // init: only catch fishes at column == 1
    for (int i = 0; i < n; ++i) {
        // build pier until at column 1, row 0-i
        if (n == 2) res = std::max(res, zeroes[i]);
        else res = std::max(res, zeroes[i] + ones.back() - ones[i]);
    }
    return res;
}
 
// all fishes are on row == 0
int sub3(int n, const std::vector<Fish>& fishes) {
    std::vector<int> weights(n);  // weights[i] = weight of fish at column i
    for (const auto& fish : fishes) {
        weights[fish.col] += fish.weight;
    }
 
    // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i
    // i-4 i-3 i-2 i-1 i
    std::vector<int> f(n);
    f[0] = 0;
    for (int i = 1; i < n; ++i) {
        f[i] = std::max(f[i-1], weights[i-1]);
        if (i >= 2) {
            f[i] = std::max(f[i], f[i-2] + weights[i-1]);
        }
        if (i >= 3) {
            f[i] = std::max(f[i], f[i-3] + weights[i-2] + weights[i-1]);
        }
    }
 
    int res = 0;
    for (int i = 0; i < n; ++i) {
        int cur = f[i];
        if (i + 1 < n) cur += weights[i+1];
        res = std::max(res, cur);
    }
    return res;
}
// }}}
 
// N <= 300
int sub5(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }
 
    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0));
    // f <= g
    for (int c = 1; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            // this is first pier
            f[c][r] = g[c][r] = weights[c-1][r];
 
            // last pier at column i-1
            for (int lastRow = 0; lastRow < n; ++lastRow) {
                if (lastRow <= r) {
                    int cur = std::max(
                            f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                            g[c-1][lastRow]);
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                } else {
                    f[c][r] = std::max(f[c][r], g[c-1][lastRow]);
                    g[c][r] = std::max(
                            g[c][r],
                            g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                }
            }
 
            // last pier at column i-2
            if (c >= 2) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)];
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                }
            }
            
            // last pier at column i-3
            if (c >= 3) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r];
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                }
            }
        }
    }
 
    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            res = std::max(res, cur);
        }
    }
    return res;
}
 
// N <= 3000
int sub6(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }
 
    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0)),
                                  g_agg(n, std::vector<int> (n, 0)),
                                  g_agg_with_next_col(n, std::vector<int> (n, 0));
 
    // f <= g
    for (int c = 0; c < n; ++c) {
        // compute {{{
        if (c > 0) {
            for (int r = 0; r < n; ++r) {
                // this is first pier
                f[c][r] = g[c][r] = weights[c-1][r];
 
                // last pier at column i-1
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    if (lastRow <= r) {
                        int cur = std::max(
                                f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                                g[c-1][lastRow]);
                        f[c][r] = std::max(f[c][r], cur);
                        g[c][r] = std::max(g[c][r], cur);
                    } else {
                        f[c][r] = std::max(f[c][r], g[c-1][lastRow]);
                        g[c][r] = std::max(
                                g[c][r],
                                g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                    }
                }
 
                // last pier at column i-2
                if (c >= 2) {
                    int cur = std::max(
                            g_agg[c-2].back() + weights[c-1][r],
                            g_agg_with_next_col[c-2].back());
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                }
                
                // last pier at column i-3
                if (c >= 3) {
                    int cur = g_agg_with_next_col[c-3].back() + weights[c-1][r];
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                }
            }
        }
        // }}}
        
        // aggregate {{{
        // g_agg[c][r] = max(g[c][0], .., g[c][r])
        std::partial_sum(g[c].begin(), g[c].end(), g_agg[c].begin(),
                [] (auto a, auto b) { return std::max(a, b); });
 
        if (c + 1 < n) {
            // g_agg_with_next_col[c][r] = max(
            //     g[c][0] + weights[c+1][0],
            //     ...
            //     g[c][r] + weights[c+1][r])
            g_agg_with_next_col[c][0] = g[c][0] + weights[c+1][0];
            for (int r = 1; r < n; ++r) {
                g_agg_with_next_col[c][r] = std::max(
                        g_agg_with_next_col[c][r-1],
                        g[c][r] + weights[c+1][r]);
            }
        }
        // }}}
    }
 
    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            res = std::max(res, cur);
        }
    }
    return res;
 
}
 
#undef int
long long max_weights(
        int n, int nFish,
        std::vector<int> xs,
        std::vector<int> ys,
        std::vector<int> ws) {
    std::vector<Fish> fishes;
    for (int i = 0; i < nFish; ++i) {
        fishes.push_back({xs[i], ys[i], ws[i]});
    }
 
    if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) {
        return sub1(fishes);
    }
    if (*std::max_element(xs.begin(), xs.end()) <= 1) {
        return sub2(n, fishes);
    }
    if (*std::max_element(ys.begin(), ys.end()) == 0) {
        return sub3(n, fishes);
    }
    if (n <= 3000) {
        return sub5(n, fishes);
    }
    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 5320 KB Output is correct
2 Correct 29 ms 5824 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 103 ms 19792 KB Output is correct
6 Correct 98 ms 19676 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 51 ms 10368 KB Output is correct
3 Correct 64 ms 11196 KB Output is correct
4 Correct 25 ms 5340 KB Output is correct
5 Correct 29 ms 5816 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 26 ms 5500 KB Output is correct
13 Correct 34 ms 6488 KB Output is correct
14 Correct 28 ms 5456 KB Output is correct
15 Correct 31 ms 6084 KB Output is correct
16 Correct 27 ms 5476 KB Output is correct
17 Correct 31 ms 6084 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 2 ms 1876 KB Output is correct
3 Correct 18 ms 4168 KB Output is correct
4 Correct 14 ms 3728 KB Output is correct
5 Correct 29 ms 6456 KB Output is correct
6 Correct 25 ms 6556 KB Output is correct
7 Correct 28 ms 6552 KB Output is correct
8 Correct 30 ms 6460 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 36 ms 852 KB Output is correct
10 Correct 277 ms 2540 KB Output is correct
11 Correct 37 ms 852 KB Output is correct
12 Correct 263 ms 2488 KB Output is correct
13 Correct 5 ms 340 KB Output is correct
14 Correct 273 ms 2480 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 36 ms 852 KB Output is correct
10 Correct 277 ms 2540 KB Output is correct
11 Correct 37 ms 852 KB Output is correct
12 Correct 263 ms 2488 KB Output is correct
13 Correct 5 ms 340 KB Output is correct
14 Correct 273 ms 2480 KB Output is correct
15 Correct 271 ms 2448 KB Output is correct
16 Correct 5 ms 468 KB Output is correct
17 Correct 287 ms 4600 KB Output is correct
18 Correct 279 ms 4564 KB Output is correct
19 Correct 287 ms 4560 KB Output is correct
20 Correct 277 ms 4672 KB Output is correct
21 Correct 285 ms 4560 KB Output is correct
22 Correct 292 ms 6588 KB Output is correct
23 Correct 271 ms 2864 KB Output is correct
24 Correct 290 ms 3848 KB Output is correct
25 Correct 263 ms 2492 KB Output is correct
26 Correct 288 ms 2844 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 36 ms 852 KB Output is correct
10 Correct 277 ms 2540 KB Output is correct
11 Correct 37 ms 852 KB Output is correct
12 Correct 263 ms 2488 KB Output is correct
13 Correct 5 ms 340 KB Output is correct
14 Correct 273 ms 2480 KB Output is correct
15 Correct 271 ms 2448 KB Output is correct
16 Correct 5 ms 468 KB Output is correct
17 Correct 287 ms 4600 KB Output is correct
18 Correct 279 ms 4564 KB Output is correct
19 Correct 287 ms 4560 KB Output is correct
20 Correct 277 ms 4672 KB Output is correct
21 Correct 285 ms 4560 KB Output is correct
22 Correct 292 ms 6588 KB Output is correct
23 Correct 271 ms 2864 KB Output is correct
24 Correct 290 ms 3848 KB Output is correct
25 Correct 263 ms 2492 KB Output is correct
26 Correct 288 ms 2844 KB Output is correct
27 Execution timed out 1105 ms 212068 KB Time limit exceeded
28 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 2 ms 1876 KB Output is correct
3 Correct 18 ms 4168 KB Output is correct
4 Correct 14 ms 3728 KB Output is correct
5 Correct 29 ms 6456 KB Output is correct
6 Correct 25 ms 6556 KB Output is correct
7 Correct 28 ms 6552 KB Output is correct
8 Correct 30 ms 6460 KB Output is correct
9 Incorrect 26 ms 5816 KB 1st lines differ - on the 1st token, expected: '99999', found: '0'
10 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 5320 KB Output is correct
2 Correct 29 ms 5824 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 103 ms 19792 KB Output is correct
6 Correct 98 ms 19676 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 51 ms 10368 KB Output is correct
9 Correct 64 ms 11196 KB Output is correct
10 Correct 25 ms 5340 KB Output is correct
11 Correct 29 ms 5816 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 26 ms 5500 KB Output is correct
19 Correct 34 ms 6488 KB Output is correct
20 Correct 28 ms 5456 KB Output is correct
21 Correct 31 ms 6084 KB Output is correct
22 Correct 27 ms 5476 KB Output is correct
23 Correct 31 ms 6084 KB Output is correct
24 Correct 0 ms 212 KB Output is correct
25 Correct 2 ms 1876 KB Output is correct
26 Correct 18 ms 4168 KB Output is correct
27 Correct 14 ms 3728 KB Output is correct
28 Correct 29 ms 6456 KB Output is correct
29 Correct 25 ms 6556 KB Output is correct
30 Correct 28 ms 6552 KB Output is correct
31 Correct 30 ms 6460 KB Output is correct
32 Correct 0 ms 212 KB Output is correct
33 Correct 0 ms 212 KB Output is correct
34 Correct 0 ms 212 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 0 ms 212 KB Output is correct
37 Correct 0 ms 212 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 0 ms 212 KB Output is correct
40 Correct 36 ms 852 KB Output is correct
41 Correct 277 ms 2540 KB Output is correct
42 Correct 37 ms 852 KB Output is correct
43 Correct 263 ms 2488 KB Output is correct
44 Correct 5 ms 340 KB Output is correct
45 Correct 273 ms 2480 KB Output is correct
46 Correct 271 ms 2448 KB Output is correct
47 Correct 5 ms 468 KB Output is correct
48 Correct 287 ms 4600 KB Output is correct
49 Correct 279 ms 4564 KB Output is correct
50 Correct 287 ms 4560 KB Output is correct
51 Correct 277 ms 4672 KB Output is correct
52 Correct 285 ms 4560 KB Output is correct
53 Correct 292 ms 6588 KB Output is correct
54 Correct 271 ms 2864 KB Output is correct
55 Correct 290 ms 3848 KB Output is correct
56 Correct 263 ms 2492 KB Output is correct
57 Correct 288 ms 2844 KB Output is correct
58 Execution timed out 1105 ms 212068 KB Time limit exceeded
59 Halted 0 ms 0 KB -