답안 #625599

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
625599 2022-08-10T15:42:11 Z I_love_Hoang_Yen 메기 농장 (IOI22_fish) C++17
18 / 100
100 ms 23724 KB
#include "bits/stdc++.h"
using namespace std;

#define int long long
struct Fish {
    int col, row;
    int weight;
};
bool operator < (const Fish& a, const Fish& b) {
    if (a.col != b.col) return a.col < b.col;
    return a.row < b.row;
}

// sub1 - 3 {{{
// fishes are on even columns -> build piers on odd columns
// & catch all fishes
int sub1(const std::vector<Fish>& fishes) {
    int res = 0;
    for (const auto& fish : fishes) {
        res += fish.weight;
    }
    return res;
}

// fishes are on first 2 columns
int sub2(int n, const std::vector<Fish>& fishes) {
    std::vector<int> zeroes(n);  // prefix sum of fish weights at column == 0
    std::vector<int> ones(n);    // prefix sum of fish weights at column == 1
    for (const auto& fish : fishes) {
        if (fish.col == 0) zeroes[fish.row] += fish.weight;
        if (fish.col == 1) ones[fish.row] += fish.weight;
    }

    std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin());
    std::partial_sum(ones.begin(), ones.end(), ones.begin());

    int res = ones.back();  // init: only catch fishes at column == 1
    for (int i = 0; i < n; ++i) {
        // build pier until at column 1, row 0-i
        if (n == 2) res = std::max(res, zeroes[i]);
        else res = std::max(res, zeroes[i] + ones.back() - ones[i]);
    }
    return res;
}

// all fishes are on row == 0
int sub3(int n, const std::vector<Fish>& fishes) {
    std::vector<int> weights(n);  // weights[i] = weight of fish at column i
    for (const auto& fish : fishes) {
        weights[fish.col] += fish.weight;
    }

    // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i
    // i-4 i-3 i-2 i-1 i
    std::vector<int> f(n);
    f[0] = 0;
    for (int i = 1; i < n; ++i) {
        f[i] = std::max(f[i-1], weights[i-1]);
        if (i >= 2) {
            f[i] = std::max(f[i], f[i-2] + weights[i-1]);
        }
        if (i >= 3) {
            f[i] = std::max(f[i], f[i-3] + weights[i-2] + weights[i-1]);
        }
    }

    int res = 0;
    for (int i = 0; i < n; ++i) {
        int cur = f[i];
        if (i + 1 < n) cur += weights[i+1];
        res = std::max(res, cur);
    }
    return res;
}
// }}}

// N <= 300
int sub5(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0));
    // f <= g
    for (int c = 1; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            // this is first pier
            f[c][r] = g[c][r] = weights[c-1][r];

            // last pier at column i-1
            for (int lastRow = 0; lastRow < n; ++lastRow) {
                if (lastRow <= r) {
                    int cur = std::max(
                            f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                            g[c-1][lastRow]);
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                } else {
                    f[c][r] = std::max(f[c][r], g[c-1][lastRow]);
                    g[c][r] = std::max(
                            g[c][r],
                            g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                }
            }

            // last pier at column i-2
            if (c >= 2) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)];
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                }
            }
            
            // last pier at column i-3
            if (c >= 3) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r];
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                }
            }
        }
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            res = std::max(res, cur);
        }
    }
    return res;
}

// N <= 3000
int sub6(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0)),
                                  g_agg(n, std::vector<int> (n, 0)),
                                  g_agg_with_next_col(n, std::vector<int> (n, 0));

    // f <= g
    for (int c = 1; c < n; ++c) {
        // compute {{{
        for (int r = 0; r < n; ++r) {
            // this is first pier
            f[c][r] = g[c][r] = weights[c-1][r];

            // last pier at column i-1
            for (int lastRow = 0; lastRow < n; ++lastRow) {
                if (lastRow <= r) {
                    int cur = std::max(
                            f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                            g[c-1][lastRow]);
                    f[c][r] = std::max(f[c][r], cur);
                    g[c][r] = std::max(g[c][r], cur);
                } else {
                    f[c][r] = std::max(f[c][r], g[c-1][lastRow]);
                    g[c][r] = std::max(
                            g[c][r],
                            g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                }
            }

            // last pier at column i-2
            if (c >= 2) {
                int cur = std::max(
                        g_agg[c-2][r] + weights[c-1][r],
                        g_agg_with_next_col[c-2].back());
                f[c][r] = std::max(f[c][r], cur);
                g[c][r] = std::max(g[c][r], cur);
            }
            
            // last pier at column i-3
            if (c >= 3) {
                int cur = g_agg_with_next_col[c-3][n-1] + weights[c-1][r];
                f[c][r] = std::max(f[c][r], cur);
                g[c][r] = std::max(g[c][r], cur);
            }
        }
        // }}}
        
        // aggregate
        if (c + 1 < n) {
            // g_agg[c][r] = max(g[c][0], .., g[c][r])
            std::partial_sum(g[c].begin(), g[c].end(), g_agg[c].begin(),
                    [] (auto a, auto b) { return std::max(a, b); });

            // g_agg_with_next_col[c][r] = max(
            //     g[c][0] + weights[c+1][0],
            //     ...
            //     g[c][r] + weights[c+1][r])
            g_agg_with_next_col[c][0] = g[c][0] + weights[c+1][0];
            for (int r = 1; r < n; ++r) {
                g_agg_with_next_col[c][r] = std::max(
                        g_agg_with_next_col[c][r-1],
                        g[c][r] + weights[c+1][r]);
            }
        }
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            res = std::max(res, cur);
        }
    }
    return res;

}

#undef int
long long max_weights(
        int n, int nFish,
        std::vector<int> xs,
        std::vector<int> ys,
        std::vector<int> ws) {
    std::vector<Fish> fishes;
    for (int i = 0; i < nFish; ++i) {
        fishes.push_back({xs[i], ys[i], ws[i]});
    }

    if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) {
        return sub1(fishes);
    }
    if (*std::max_element(xs.begin(), xs.end()) <= 1) {
        return sub2(n, fishes);
    }
    if (*std::max_element(ys.begin(), ys.end()) == 0) {
        return sub3(n, fishes);
    }
    if (n <= 3000) {
        return sub6(n, fishes);
    }
    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 5340 KB Output is correct
2 Correct 30 ms 7588 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 100 ms 23720 KB Output is correct
6 Correct 99 ms 23724 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 49 ms 10372 KB Output is correct
3 Correct 65 ms 11200 KB Output is correct
4 Correct 23 ms 5348 KB Output is correct
5 Correct 29 ms 5824 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 24 ms 5444 KB Output is correct
13 Correct 33 ms 6480 KB Output is correct
14 Correct 26 ms 5424 KB Output is correct
15 Correct 30 ms 6072 KB Output is correct
16 Correct 25 ms 5448 KB Output is correct
17 Correct 28 ms 6096 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 2 ms 1876 KB Output is correct
3 Correct 16 ms 4136 KB Output is correct
4 Correct 12 ms 4008 KB Output is correct
5 Correct 29 ms 6616 KB Output is correct
6 Correct 24 ms 7452 KB Output is correct
7 Correct 30 ms 7996 KB Output is correct
8 Correct 30 ms 8088 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Incorrect 13 ms 1236 KB 1st lines differ - on the 1st token, expected: '216624184325', found: '215751067315'
10 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Incorrect 13 ms 1236 KB 1st lines differ - on the 1st token, expected: '216624184325', found: '215751067315'
10 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Incorrect 13 ms 1236 KB 1st lines differ - on the 1st token, expected: '216624184325', found: '215751067315'
10 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 2 ms 1876 KB Output is correct
3 Correct 16 ms 4136 KB Output is correct
4 Correct 12 ms 4008 KB Output is correct
5 Correct 29 ms 6616 KB Output is correct
6 Correct 24 ms 7452 KB Output is correct
7 Correct 30 ms 7996 KB Output is correct
8 Correct 30 ms 8088 KB Output is correct
9 Incorrect 27 ms 5904 KB 1st lines differ - on the 1st token, expected: '99999', found: '0'
10 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 5340 KB Output is correct
2 Correct 30 ms 7588 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 100 ms 23720 KB Output is correct
6 Correct 99 ms 23724 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 49 ms 10372 KB Output is correct
9 Correct 65 ms 11200 KB Output is correct
10 Correct 23 ms 5348 KB Output is correct
11 Correct 29 ms 5824 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 24 ms 5444 KB Output is correct
19 Correct 33 ms 6480 KB Output is correct
20 Correct 26 ms 5424 KB Output is correct
21 Correct 30 ms 6072 KB Output is correct
22 Correct 25 ms 5448 KB Output is correct
23 Correct 28 ms 6096 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 2 ms 1876 KB Output is correct
26 Correct 16 ms 4136 KB Output is correct
27 Correct 12 ms 4008 KB Output is correct
28 Correct 29 ms 6616 KB Output is correct
29 Correct 24 ms 7452 KB Output is correct
30 Correct 30 ms 7996 KB Output is correct
31 Correct 30 ms 8088 KB Output is correct
32 Correct 0 ms 212 KB Output is correct
33 Correct 0 ms 212 KB Output is correct
34 Correct 0 ms 212 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 0 ms 212 KB Output is correct
37 Correct 0 ms 212 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 0 ms 212 KB Output is correct
40 Incorrect 13 ms 1236 KB 1st lines differ - on the 1st token, expected: '216624184325', found: '215751067315'
41 Halted 0 ms 0 KB -