Submission #625475

#TimeUsernameProblemLanguageResultExecution timeMemory
625475I_love_Hoang_YenDistributing Candies (IOI21_candies)C++17
Compilation error
0 ms0 KiB
#include "bits/stdc++.h" using namespace std; using Query = std::tuple<int,int,int>; // Lazy Segment Tree, copied from AtCoder {{{ // Source: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp // Doc: https://atcoder.github.io/ac-library/master/document_en/lazysegtree.html // // Notes: // - Index of elements from 0 // - Range queries are [l, r-1] // - composition(f, g) should return f(g()) // // Tested: // - https://oj.vnoi.info/problem/qmax2 // - https://oj.vnoi.info/problem/lites // - (range set, add, mult, sum) https://oj.vnoi.info/problem/segtree_itmix // - (range add (i-L)*A + B, sum) https://oj.vnoi.info/problem/segtree_itladder // - https://atcoder.jp/contests/practice2/tasks/practice2_l // - https://judge.yosupo.jp/problem/range_affine_range_sum int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } template< class S, // node data type S (*op) (S, S), // combine 2 nodes S (*e) (), // identity element class F, // lazy propagation tag S (*mapping) (F, S), // apply tag F on a node F (*composition) (F, F), // combine 2 tags F (*id)() // identity tag > struct LazySegTree { LazySegTree() : LazySegTree(0) {} explicit LazySegTree(int n) : LazySegTree(vector<S>(n, e())) {} explicit LazySegTree(const vector<S>& v) : _n((int) v.size()) { log = ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); lz = std::vector<F>(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } // 0 <= p < n void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } // 0 <= p < n S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } // Get product in range [l, r-1] // 0 <= l <= r <= n // For empty segment (l == r) -> return e() S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } // 0 <= p < n void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } // Apply f on all elements in range [l, r-1] // 0 <= l <= r <= n void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } // Binary search on SegTree to find largest r: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l] .. a[r])) = false (assuming op(..., a[n]), which is out of bound, is always false) template <bool (*g)(S)> int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template <class G> int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } // Binary search on SegTree to find smallest l: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l-1] .. a[r-1])) = false (assuming op(a[-1], ..), which is out of bound, is always false) template <bool (*g)(S)> int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template <class G> int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; vector<S> d; vector<F> lz; void update(int k) { d[k] = op(d[2*k], d[2*k+1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2*k, lz[k]); all_apply(2*k+1, lz[k]); lz[k] = id(); } }; // }}} const long long INF = static_cast<long long> (2e18); struct S { long long suf_min, suf_max; }; S op(S left, S right) { return S { std::min(left.suf_min, right.suf_min), std::max(left.suf_max, right.suf_max), }; }; S e() { return S{ INF, -INF }; } S mapping(long long f, S s) { return S{ f + s.suf_min, f + s.suf_max }; } long long composition(long long f, long long g) { return f + g; } long long id() { return 0; } std::vector<int> sub5( const std::vector<int>& c, const std::vector<Query>& queries) { std::vector< std::vector< std::pair<int, long long> > > addAt(c.size()), removeAt(c.size()); for (int i = 0; i < (int) queries.size(); ++i) { auto [l, r, v] = queries[i]; addAt[l].push_back({i, v}); removeAt[r].push_back({i, -v}); } int q = queries.size(); LazySegTree<S, op, e, long long, mapping, composition, id> st(std::vector<S> (q+1, {0, 0})); std::vector<int> a(c.size()); for (int i = 0; i < (int) a.size(); ++i) { for (auto [queryId, val] : addAt[i]) { st.apply(queryId + 1, q + 1, val); } auto suffix_max = [&] (int i) { return st.prod(i, q + 1).suf_max; }; auto suffix_min = [&] (int i) { return st.prod(i, q + 1).suf_min; }; auto sum_v = [&] (int i) { return st.get(i).suf_min; }; // find last index t where suffix_max(t) - suffix_min(t) > c[i] auto r = std::views::iota(0, q + 1); auto res = std::ranges::partition_point( r, [&] (int mid) { return suffix_max(mid) - suffix_min(mid) > c[i]; }); if (res == r.begin()) a[i] = sum_v(q) - suffix_min(0); else { --res; if (sum_v(*res) < sum_v(q)) { // currently touch lower bar, then finally touch upper bar once // after touching upper bar: // - upper bar will finally be at suffix_max[*res] // - final distance to upper bar is suffix_max[*res] - sum_vs a[i] = c[i] - (suffix_max(*res) - sum_v(q)); } else { a[i] = sum_v(q) - suffix_min(*res); } } for (auto [queryId, val] : removeAt[i]) { st.apply(queryId + 1, q + 1, val); } } return a; } std::vector<int> distribute_candies( std::vector<int> c, std::vector<int> l, std::vector<int> r, std::vector<int> v) { int q = (int) l.size(); std::vector<Query> queries; for (int i = 0; i < q; ++i) { queries.push_back({l[i], r[i], v[i]}); } return sub5(c, queries); }

Compilation message (stderr)

candies.cpp: In function 'std::vector<int> sub5(const std::vector<int>&, const std::vector<std::tuple<int, int, int> >&)':
candies.cpp:266:23: error: 'std::views' has not been declared
  266 |         auto r = std::views::iota(0, q + 1);
      |                       ^~~~~
candies.cpp:267:25: error: 'std::ranges' has not been declared
  267 |         auto res = std::ranges::partition_point(
      |                         ^~~~~~