#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <numeric>
#include <iomanip>
#include <string>
#include <deque>
#include <random>
using namespace std;
typedef long long int ll;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef multiset<ll> multisi;
typedef set<ll> si;
typedef vector<si> vsi;
typedef pair<ll, ll> pi;
typedef vector<pi> vpi;
typedef set<pi> spi;
typedef map<pi, ll> mpii;
ll N;
vpi cells;
vi x_to_auxillary_node;
vi size_of_x_auxillary_node;
vi y_to_auxillary_node;
vi size_of_y_auxillary_node;
si x_cells;
si y_cells;
vsi x_cells_graph;
vsi y_cells_graph;
// distance in three between nodes i and j is: dist[i] + dist[j] - 2 * dist[LCA(i, j)]
// compute dist in O(n)
// compute LCA in O(nlogn)
// sum = sum_dist(w[i] * dist[i] * M) - 2 * sum_LCA(dist[LCA]).
// so we sum over the distance to the LCA of every pair of nodes
// if node has ≥2 children: 1 + sum(subgraphsize[i] * (1 + sum_subgraphsize - subgraphsize[i])) // node <-> node, subgraph <-> node, subgraph <-> subgraph
// else node has < 2 children: LCA = subgraphsize(child) + 1
// count the number of nodes a node is LCA for: number of pairs of nodes in subgraph: (#nodes in subgraph)^2. (sum(nodes_in_subgraph for children) + nodes_in_self)
bool cell_exists(ll x, ll y) {
vpi::iterator cell = lower_bound(cells.begin(), cells.end(), make_pair(x, y));
if (cell == cells.end()) {
return false;
}
return (*cell == make_pair(x, y));
}
ll find_par_x(ll x) {
ll y = x;
while (x != x_to_auxillary_node[x]) {
x = x_to_auxillary_node[x];
}
x_to_auxillary_node[y] = x;
return x;
}
ll find_par_y(ll x) {
ll y = x;
while (x != y_to_auxillary_node[x]) {
x = y_to_auxillary_node[x];
}
y_to_auxillary_node[y] = x;
return x;
}
void x_combine(ll a, ll b) {
a = find_par_x(a);
b = find_par_x(b);
if (a == b) {
return;
}
if (size_of_x_auxillary_node[a] > size_of_x_auxillary_node[b]) {
int temp = a;
a = b;
b = temp;
}
x_to_auxillary_node[a] = b;
size_of_x_auxillary_node[b] += size_of_x_auxillary_node[a];
x_cells.erase(a);
}
void y_combine(ll a, ll b) {
a = find_par_y(a);
b = find_par_y(b);
if (a == b) {
return;
}
if (size_of_y_auxillary_node[a] > size_of_y_auxillary_node[b]) {
int temp = a;
a = b;
b = temp;
}
y_to_auxillary_node[a] = b;
size_of_y_auxillary_node[b] += size_of_y_auxillary_node[a];
y_cells.erase(a);
}
vi subgraph_size; // number cells in subtree
vi dist_from_root;
ll sum_pairwise_distances = 0;
// sum_{i}^N{sum_{j}^N{dist[i][j]}} = N * sum_{i}^N(dist[i]) - sum_{i}^N{sum_{pair nodes with LCA i}{dist[i]}}
// sum_{i}^N{sum_{pair nodes with LCA i}{dist[i]}} = sum_{i}^N{dist[i] * (pair nodes with LCA i)}
// pair nodes with LCA i = (pairs of nodes in different child subtrees of i) + (pairs of cell in node i and in strict subtree of i) + (pairs of cells in node i)
// pair nodes with LCA i = sum_{child j of i}{(size[subtree(j)] * (sum_{child k != j of i}{size[subtree(j)]}))} / 2 + sum_{child j of i}{size[subtree(j)] * size[i]} + size[i]^2
// LCA = sum(subgraph_size[*child] * (subgraph_size[cur] - subgraph_size[*child])) / 2 + subgraph_size[cur] - size_of_x_auxillary_node[cur] + size_of_x_auxilary_node[cur]**2;
void x_DFS(ll cur, ll par) {
//cout << cur << ": (";
subgraph_size[cur] = size_of_x_auxillary_node[cur];
for (si::iterator child = x_cells_graph[cur].begin(); child != x_cells_graph[cur].end(); child++) {
if (*child != par) {
dist_from_root[*child] = dist_from_root[cur] + 1;
x_DFS(*child, cur);
subgraph_size[cur] += subgraph_size[*child];
}
}
// calculate pair of nodes with LCA i
ll twoLCA = subgraph_size[cur] * subgraph_size[cur];
for (si::iterator child = x_cells_graph[cur].begin(); child != x_cells_graph[cur].end(); child++) {
if (*child != par) {
twoLCA -= subgraph_size[*child] * subgraph_size[*child];
}
}
twoLCA *= dist_from_root[cur];
sum_pairwise_distances += dist_from_root[cur] * N * size_of_x_auxillary_node[cur];
sum_pairwise_distances -= twoLCA;
//cout << ")->" << sum_pairwise_distances << " | ";
}
void y_DFS(ll cur, ll par) {
//cout << cur << ": (";
subgraph_size[cur] = size_of_y_auxillary_node[cur];
for (si::iterator child = y_cells_graph[cur].begin(); child != y_cells_graph[cur].end(); child++) {
if (*child != par) {
dist_from_root[*child] = dist_from_root[cur] + 1;
y_DFS(*child, cur);
subgraph_size[cur] += subgraph_size[*child];
}
}
// calculate pair of nodes with LCA i
ll twoLCA = subgraph_size[cur] * subgraph_size[cur];
for (si::iterator child = y_cells_graph[cur].begin(); child != y_cells_graph[cur].end(); child++) {
if (*child != par) {
twoLCA -= subgraph_size[*child] * subgraph_size[*child];
}
}
twoLCA *= dist_from_root[cur];
sum_pairwise_distances += dist_from_root[cur] * N * size_of_y_auxillary_node[cur];
sum_pairwise_distances -= twoLCA;
//cout << ")->" << sum_pairwise_distances << " | ";
}
int DistanceSum(int N_, int* X_, int* Y_) {
N = N_;
cells.resize(N);
for (int i = 0; i < N; i++) {
cells[i] = make_pair(X_[i], Y_[i]);
}
sort(cells.begin(), cells.end());
x_to_auxillary_node.resize(N);
size_of_x_auxillary_node.resize(N);
y_to_auxillary_node.resize(N);
size_of_y_auxillary_node.resize(N);
x_cells_graph.resize(N);
y_cells_graph.resize(N);
for (int i = 0; i < N; i++) {
x_to_auxillary_node[i] = i;
size_of_x_auxillary_node[i] = 1;
y_to_auxillary_node[i] = i;
size_of_y_auxillary_node[i] = 1;
x_cells.insert(i);
y_cells.insert(i);
}
// create nodes in auxillary graphs
for (int i = 0; i < N; i++) {
if (cell_exists(cells[i].first + 1, cells[i].second)) {
x_combine(i, lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first + 1, cells[i].second)) - cells.begin());
}
if (cell_exists(cells[i].first - 1, cells[i].second)) {
x_combine(i, lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first - 1, cells[i].second)) - cells.begin());
}
if (cell_exists(cells[i].first, cells[i].second + 1)) {
y_combine(i, lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first, cells[i].second + 1)) - cells.begin());
}
if (cell_exists(cells[i].first, cells[i].second - 1)) {
y_combine(i, lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first, cells[i].second - 1)) - cells.begin());
}
}
// create edges in auxillary graphs
for (int i = 0; i < N; i++) {
if (cell_exists(cells[i].first + 1, cells[i].second)) {
y_cells_graph[find_par_y(i)].insert(find_par_y(lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first + 1, cells[i].second)) - cells.begin()));
}
if (cell_exists(cells[i].first - 1, cells[i].second)) {
y_cells_graph[find_par_y(i)].insert(find_par_y(lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first - 1, cells[i].second)) - cells.begin()));
}
if (cell_exists(cells[i].first, cells[i].second + 1)) {
x_cells_graph[find_par_x(i)].insert(find_par_x(lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first, cells[i].second + 1)) - cells.begin()));
}
if (cell_exists(cells[i].first, cells[i].second - 1)) {
x_cells_graph[find_par_x(i)].insert(find_par_x(lower_bound(cells.begin(), cells.end(), make_pair(cells[i].first, cells[i].second - 1)) - cells.begin()));
}
}
// now we have the nodes and edges in our axillary graphs
// nodes are in the si x_cells
// edges are in the vsi x_cells_graph
// the auxillary graphs are trees
// we root the trees and find the sum of the nodes in the sumgraph, as well as the distance to each node
// this we do through dfs
/*
for (auto itr : x_to_auxillary_node) {
cout << itr << " ";
}
cout << endl;
for (auto itr : size_of_x_auxillary_node) {
cout << itr << " ";
}
cout << endl;
for (auto itr : y_to_auxillary_node) {
cout << itr << " ";
}
cout << endl;
for (auto itr : size_of_y_auxillary_node) {
cout << itr << " ";
}
cout << endl;
for (auto itr : y_cells) {
cout << itr << " ";
}
cout << endl;
for (auto itr : x_cells) {
cout << itr << " ";
}
cout << endl;
for (int i = 0; i < N; i++) {
if (y_cells_graph[i].size()) {
cout << i << ": ";
for (auto itr : y_cells_graph[i]) {
cout << itr << " ";
}
cout << endl;
}
}
for (int i = 0; i < N; i++) {
if (x_cells_graph[i].size()) {
cout << i << ": ";
for (auto itr : x_cells_graph[i]) {
cout << itr << " ";
}
cout << endl;
}
}
*/
subgraph_size.resize(N);
dist_from_root.resize(N);
dist_from_root[*x_cells.begin()] = 0;
x_DFS(*x_cells.begin(), -1);
//cout << sum_pairwise_distances << endl;
dist_from_root[*y_cells.begin()] = 0;
y_DFS(*y_cells.begin(), -1);
ll big_mod = 1000000000;
//cout << sum_pairwise_distances % big_mod << endl;
return sum_pairwise_distances % big_mod;
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
212 KB |
Output is correct |
2 |
Correct |
1 ms |
212 KB |
Output is correct |
3 |
Correct |
1 ms |
212 KB |
Output is correct |
4 |
Correct |
1 ms |
308 KB |
Output is correct |
5 |
Correct |
1 ms |
308 KB |
Output is correct |
6 |
Correct |
1 ms |
308 KB |
Output is correct |
7 |
Correct |
1 ms |
340 KB |
Output is correct |
8 |
Correct |
1 ms |
352 KB |
Output is correct |
9 |
Correct |
1 ms |
312 KB |
Output is correct |
10 |
Correct |
1 ms |
340 KB |
Output is correct |
11 |
Correct |
1 ms |
340 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
568 KB |
Output is correct |
2 |
Correct |
2 ms |
468 KB |
Output is correct |
3 |
Correct |
3 ms |
724 KB |
Output is correct |
4 |
Correct |
3 ms |
724 KB |
Output is correct |
5 |
Correct |
6 ms |
852 KB |
Output is correct |
6 |
Correct |
4 ms |
852 KB |
Output is correct |
7 |
Correct |
4 ms |
852 KB |
Output is correct |
8 |
Correct |
4 ms |
824 KB |
Output is correct |
9 |
Correct |
4 ms |
828 KB |
Output is correct |
10 |
Correct |
4 ms |
808 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
37 ms |
5636 KB |
Output is correct |
2 |
Correct |
44 ms |
5620 KB |
Output is correct |
3 |
Correct |
94 ms |
13660 KB |
Output is correct |
4 |
Correct |
91 ms |
13612 KB |
Output is correct |
5 |
Correct |
188 ms |
27004 KB |
Output is correct |
6 |
Correct |
187 ms |
27004 KB |
Output is correct |
7 |
Correct |
209 ms |
27180 KB |
Output is correct |
8 |
Correct |
219 ms |
26900 KB |
Output is correct |
9 |
Correct |
199 ms |
27084 KB |
Output is correct |
10 |
Correct |
190 ms |
29360 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
40 ms |
6072 KB |
Output is correct |
2 |
Correct |
42 ms |
5840 KB |
Output is correct |
3 |
Correct |
96 ms |
14524 KB |
Output is correct |
4 |
Correct |
98 ms |
13776 KB |
Output is correct |
5 |
Correct |
216 ms |
28628 KB |
Output is correct |
6 |
Correct |
205 ms |
27084 KB |
Output is correct |
7 |
Correct |
216 ms |
29124 KB |
Output is correct |
8 |
Correct |
217 ms |
27092 KB |
Output is correct |
9 |
Correct |
214 ms |
26944 KB |
Output is correct |
10 |
Correct |
194 ms |
26940 KB |
Output is correct |