답안 #622519

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
622519 2022-08-04T10:54:04 Z inksamurai Slon (COCI15_slon) C++17
120 / 120
4 ms 468 KB
#include <bits/stdc++.h>

#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>

namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}

long long inv_mod(long long x, long long m) {
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}

// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    // Contracts: 0 <= r0 < m0
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }
        // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)

        // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
        // r2 % m0 = r0
        // r2 % m1 = r1
        // -> (r0 + x*m0) % m1 = r1
        // -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
        // -> x = (r1 - r0) / g * inv(u0) (mod u1)

        // im = inv(u0) (mod u1) (0 <= im < u1)
        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);

        long long u1 = (m1 / g);
        // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
        if ((r1 - r0) % g) return {0, 0};

        // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
        long long x = (r1 - r0) / g % u1 * im % u1;

        // |r0| + |m0 * x|
        // < m0 + m0 * (u1 - 1)
        // = m0 + m0 * m1 / g - m0
        // = lcm(m0, m1)
        r0 += x * m0;
        m0 *= u1;  // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
    long long ans = 0;
    if (a >= m) {
        ans += (n - 1) * n * (a / m) / 2;
        a %= m;
    }
    if (b >= m) {
        ans += n * (b / m);
        b %= m;
    }

    long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
    if (y_max == 0) return ans;
    ans += (n - (x_max + a - 1) / a) * y_max;
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
    return ans;
}

}  // namespace atcoder



#define int ll
using namespace std;
#define rep(i,n) for(int i=0;i<n;i++)
#define fi first
#define se second
#define pb push_back
#define sz(a) (int)a.size()
#define vec(...) vector<__VA_ARGS__>
#define _3SgiE60 ios::sync_with_stdio(0),cin.tie(0)
typedef long long ll;
using pii=pair<int,int>;
using vi=vector<int>;
void print(){cout<<'\n';}
template<class h,class ...t>
void print(const h&v,const t&...u){cout<<v<<' ',print(u...);}
// e

signed main(){
_3SgiE60;
	string s;
	cin>>s;
	int need,mod;
	cin>>need>>mod;
	const int n=sz(s);
	// k*x+l
	auto digit=[&](char ch)->bool{
		return ch>='0' and ch<='9';
	};
	auto operation=[&](char ch)->bool{
		return ch=='+' or ch=='-' or ch=='*';
	};
	auto _get_id=[&](char ch)->int{
		return ch=='+'?0:ch=='-'?1:2;
	};
	auto merge=[&](pii p,pii q,int t)->pii{
		// print(t);
		pii res;
		if(t==2){
			res.fi=p.fi*q.fi+p.fi*q.se%mod;
			res.fi+=p.se*q.fi%mod;
			res.se=p.se*q.se%mod;
		}else if(t==1){
			res.fi=(p.fi-q.fi+mod*mod)%mod;
			res.se=(p.se-q.se+mod*mod)%mod;
		}else if(t==0){
			res.fi=(p.fi+q.fi)%mod;
			res.se=(p.se+q.se)%mod;
		}
		res.fi%=mod;
		res.se%=mod;
		return res;
	};
	using T=pair<int,pii>;
	int i=0;
	auto dfs=[&](auto self)->pii{
		if(i>=n) return {0,0};
		int pi=i;
		vec(T) ops;
		// type,val
		while(i<n){
			if(s[i]=='('){
				i+=1;
				pii np=self(self);
				ops.pb(T(1,np));
			}else if(s[i]==')'){
				i+=1;
				break;
			}else{
				if(operation(s[i])){
					ops.pb(T(0,pii(_get_id(s[i]),0)));
					i+=1;
				}else{
					pii np={0,0};
					if(s[i]=='x'){
						np={1,0};
						i+=1;
					}else{
						int v=0;
						while(digit(s[i])){
							v=v*10+(s[i]-'0');
							v%=mod;
							i+=1;
						}
						np={0,v};
					}
					ops.pb(T(1,np));
				}
			}
		}
		vec(T) nops;
		rep(_i,sz(ops)){
			if(ops[_i].fi==0 and ops[_i].se.fi==2){
				assert(_i and _i<sz(ops)-1 and ops[_i-1].fi==1);
				pii p=ops[_i-1].se;
				for(int j=_i;j<sz(ops);j+=2){
					if(ops[j].se.fi!=2){
						break;
					}
					p=merge(p,ops[j+1].se,2);
					_i=j+1;
				}
				nops.pb(T(1,p));
			}else if(_i==sz(ops)-1 or !(ops[_i+1].fi==0 and ops[_i+1].se.fi==2)){
				nops.pb(ops[_i]);
			}
		}
		ops=nops;
		if(sz(ops)==1) return ops[0].se;
		if(!sz(ops)) return {0,0};
		assert(ops[0].fi==1);
		pii p=ops[0].se;
		for(int _i=2;_i<sz(ops);_i+=2){
			// print("ho",ops[i-1].se.fi);
			assert(ops[_i-1].fi==0);
			p=merge(p,ops[_i].se,ops[_i-1].se.fi);
		}
		return p;
	};
	pii p=dfs(dfs);
	pii np;
	np.fi=p.fi,np.se=(p.se-need+mod)%mod;
	if(np.fi<np.se) np.fi+=mod;
	vec(ll) m={np.fi,mod};
	vec(ll) r={np.se,0};
	pii res=atcoder::crt(r,m);
	cout<<(res.fi-np.se)/np.fi<<"\n";
}

Compilation message

slon.cpp: In instantiation of 'main()::<lambda(auto:23)> [with auto:23 = main()::<lambda(auto:23)>; pii = std::pair<long long int, long long int>]':
slon.cpp:395:15:   required from here
slon.cpp:333:7: warning: unused variable 'pi' [-Wunused-variable]
  333 |   int pi=i;
      |       ^~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 4 ms 468 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 3 ms 340 KB Output is correct
9 Correct 2 ms 340 KB Output is correct
10 Correct 3 ms 340 KB Output is correct