제출 #622512

#제출 시각아이디문제언어결과실행 시간메모리
622512inksamuraiSlon (COCI15_slon)C++17
120 / 120
4 ms468 KiB
#include <bits/stdc++.h> #include <utility> namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #include <algorithm> #include <cassert> #include <tuple> #include <vector> namespace atcoder { long long pow_mod(long long x, long long n, int m) { assert(0 <= n && 1 <= m); if (m == 1) return 0; internal::barrett bt((unsigned int)(m)); unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m)); while (n) { if (n & 1) r = bt.mul(r, y); y = bt.mul(y, y); n >>= 1; } return r; } long long inv_mod(long long x, long long m) { assert(1 <= m); auto z = internal::inv_gcd(x, m); assert(z.first == 1); return z.second; } // (rem, mod) std::pair<long long, long long> crt(const std::vector<long long>& r, const std::vector<long long>& m) { assert(r.size() == m.size()); int n = int(r.size()); // Contracts: 0 <= r0 < m0 long long r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) { std::swap(r0, r1); std::swap(m0, m1); } if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1) // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1)); // r2 % m0 = r0 // r2 % m1 = r1 // -> (r0 + x*m0) % m1 = r1 // -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1) // -> x = (r1 - r0) / g * inv(u0) (mod u1) // im = inv(u0) (mod u1) (0 <= im < u1) long long g, im; std::tie(g, im) = internal::inv_gcd(m0, m1); long long u1 = (m1 / g); // |r1 - r0| < (m0 + m1) <= lcm(m0, m1) if ((r1 - r0) % g) return {0, 0}; // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1) long long x = (r1 - r0) / g % u1 * im % u1; // |r0| + |m0 * x| // < m0 + m0 * (u1 - 1) // = m0 + m0 * m1 / g - m0 // = lcm(m0, m1) r0 += x * m0; m0 *= u1; // -> lcm(m0, m1) if (r0 < 0) r0 += m0; } return {r0, m0}; } long long floor_sum(long long n, long long m, long long a, long long b) { long long ans = 0; if (a >= m) { ans += (n - 1) * n * (a / m) / 2; a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } long long y_max = (a * n + b) / m, x_max = (y_max * m - b); if (y_max == 0) return ans; ans += (n - (x_max + a - 1) / a) * y_max; ans += floor_sum(y_max, a, m, (a - x_max % a) % a); return ans; } } // namespace atcoder #define int ll using namespace std; #define rep(i,n) for(int i=0;i<n;i++) #define fi first #define se second #define pb push_back #define sz(a) (int)a.size() #define vec(...) vector<__VA_ARGS__> #define _3SgiE60 ios::sync_with_stdio(0),cin.tie(0) typedef long long ll; using pii=pair<int,int>; using vi=vector<int>; void print(){cout<<'\n';} template<class h,class ...t> void print(const h&v,const t&...u){cout<<v<<' ',print(u...);} // e int binpow(int a,int b,int mod){ int res=1; while(b){ if(b%2){ res=res*a%mod; res%=mod; } a=a*a%mod; a%=mod; b/=2; } return res; } signed main(){ _3SgiE60; string s; cin>>s; int need,mod; cin>>need>>mod; const int n=sz(s); // k*x+l auto digit=[&](char ch)->bool{ return ch>='0' and ch<='9'; }; auto operation=[&](char ch)->bool{ return ch=='+' or ch=='-' or ch=='*'; }; auto _get_id=[&](char ch)->int{ return ch=='+'?0:ch=='-'?1:2; }; auto merge=[&](pii p,pii q,int t)->pii{ // print(t); pii res; if(t==2){ res.fi=p.fi*q.fi+p.fi*q.se%mod; res.fi+=p.se*q.fi%mod; res.se=p.se*q.se%mod; }else if(t==1){ res.fi=(p.fi-q.fi+mod*mod)%mod; res.se=(p.se-q.se+mod*mod)%mod; }else if(t==0){ res.fi=(p.fi+q.fi)%mod; res.se=(p.se+q.se)%mod; } res.fi%=mod; res.se%=mod; return res; }; using T=pair<int,pii>; int i=0; auto dfs=[&](auto self)->pii{ if(i>=n) return {0,0}; int pi=i; vec(T) ops; // type,val while(i<n){ if(s[i]=='('){ i+=1; pii np=self(self); // if(pi==0) print(i,np.fi,np.se); ops.pb(T(1,np)); }else if(s[i]==')'){ i+=1; break; }else{ if(operation(s[i])){ ops.pb(T(0,pii(_get_id(s[i]),0))); i+=1; }else{ pii np={0,0}; if(s[i]=='x'){ np={1,0}; i+=1; }else{ int v=0; while(digit(s[i])){ v=v*10+(s[i]-'0'); v%=mod; i+=1; } np={0,v}; } ops.pb(T(1,np)); } } } // if(pi==0){ // for(auto tp:ops){ // print(tp.fi,tp.se.fi,tp.se.se); // } // } vec(T) nops; rep(_i,sz(ops)){ if(ops[_i].fi==0 and ops[_i].se.fi==2){ assert(_i and _i<sz(ops)-1 and ops[_i-1].fi==1); pii p=ops[_i-1].se; for(int j=_i;j<sz(ops);j+=2){ if(ops[j].se.fi!=2){ break; } p=merge(p,ops[j+1].se,2); _i=j+1; } nops.pb(T(1,p)); }else if(_i==sz(ops)-1 or !(ops[_i+1].fi==0 and ops[_i+1].se.fi==2)){ nops.pb(ops[_i]); } } // print("\n..... old operations "); // for(auto tp:ops){ // print(tp.fi,tp.se.fi,tp.se.se); // } // print("\n......."); ops=nops; if(sz(ops)==1) return ops[0].se; if(!sz(ops)) return {0,0}; assert(ops[0].fi==1); pii p=ops[0].se; for(int _i=2;_i<sz(ops);_i+=2){ // print("ho",ops[i-1].se.fi); assert(ops[_i-1].fi==0); p=merge(p,ops[_i].se,ops[_i-1].se.fi); } // if(i==0){ // print(p.fi,p.se); // } // pii p={0,0}; return p; }; pii p=dfs(dfs); // print(p.fi,p.se); // print(mod); pii np; np.fi=p.fi,np.se=(p.se-need+mod)%mod; if(np.fi<np.se) np.fi+=mod; vec(ll) m={np.fi,mod}; vec(ll) r={np.se,0}; pii res=atcoder::crt(r,m); cout<<(res.fi-np.se)/np.fi<<"\n"; }

컴파일 시 표준 에러 (stderr) 메시지

slon.cpp: In instantiation of 'main()::<lambda(auto:23)> [with auto:23 = main()::<lambda(auto:23)>; pii = std::pair<long long int, long long int>]':
slon.cpp:424:15:   required from here
slon.cpp:347:7: warning: unused variable 'pi' [-Wunused-variable]
  347 |   int pi=i;
      |       ^~
#Verdict Execution timeMemoryGrader output
Fetching results...