# | 제출 시각UTC-0 | 아이디 | 문제 | 언어 | 결과 | 실행 시간 | 메모리 |
---|---|---|---|---|---|---|---|
622281 | jophyyjh | Lottery (CEOI18_lot) | C++14 | 78 ms | 21376 KiB |
이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
/**
* Notes during contest.
*
* ------ A ------
* Looks like a dp.
*
* ------ B ------
* I think i've seen sth similar on luogu. First, let's assume that d >= 0 and i'll
* use the words "increase" & "decrease". If we wanna increase an interval by d, we
* can greedily increase a suffix (instead of just an interval in the middle). If we
* are to decrease an interval by d, we can greedily decrease a prefix. The two cases
* are symmetric, so we can assume that one always increase a suffix by 0 <= d <= x.
* And, if we're increasing a suffix, why don't we just do d=x? The rest is quite
* straight-forward.
*
* ------ C ------
* For k_j = 0, we have to find the num of times each interval appeared. This can be
* effectively done with str hashing. [S3] solved. [S1] is just brute-force: we can
* do a O(n^2) for loop, iterating over all pairs of starting pos, naively comparing
* the dist. of 2 substr. [S2] is a O(n^2) comparison between pairs of VALUES and
* apply a difference array.
* We're only looking for the num of mismatches. Let's compress the values (a_i:
* 10^9 -> 10^4).
*
* Time Complexity 1: O()
* Time Complexity 2: O(n * log(n))
* Time Complexity 3: O(n^2 + q) ([S1-2]), O(n) (non-deterministic hashing)
* Implementation 1 (Just for partials, [S1-2], [S3]. [S3] not finished)
*/
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |