Submission #622280

#TimeUsernameProblemLanguageResultExecution timeMemory
622280jophyyjhCloud Computing (CEOI18_clo)C++14
54 / 100
3044 ms2004 KiB
/** * Notes during contest. * * ------ A ------ * Looks like a dp, and the score distribution is interesting too.. Sort the machines * and orders by their clock speed. By greedy arguments, if we've seletected the * subset of orders & machines, we sort the clock speed in order and assign them. * [S3] is the one that gave me the idea: we first sort orders & machines, then use * O(nm) dp on prefixes. Note that cores can be shared across orders, so we need an * additional val in our dp state, which is the num of cores left. This val can at * most be 50. Note that one should take a close look at the memory limit too: our dp * sequence shouldn't take up too much memory. * * P.S. When about 1.5 hours were left, I left home. Technically I didn't finish the * virtual contest. * * ------ B ------ * I think i've seen sth similar on luogu. First, let's assume that d >= 0 and i'll * use the words "increase" & "decrease". If we wanna increase an interval by d, we * can greedily increase a suffix (instead of just an interval in the middle). If we * are to decrease an interval by d, we can greedily decrease a prefix. The two cases * are symmetric, so we can assume that one always increase a suffix by 0 <= d <= x. * And, if we're increasing a suffix, why don't we just do d=x? The rest is quite * straight-forward. * * ------ C ------ * For k_j = 0, we have to find the num of times each interval appeared. This can be * effectively done with str hashing. [S3] solved. [S1] is just brute-force: we can * do a O(n^2) for loop, iterating over all pairs of starting pos, naively comparing * the dist. of 2 substr. [S2] is a O(n^2) comparison between pairs of VALUES and * apply a difference array. * We're only looking for the num of mismatches. Let's compress the values (a_i: * 10^9 -> 10^4). * * Time Complexity 1: O(nm * c_max + n * log(n) + m * log(m)) * Time Complexity 2: O(n * log(n)) * Time Complexity 3: O(n^2 + q) ([S1-2]), O(n) (non-deterministic hashing) * Implementation 1 (Full solution (?!), dp + greedy) */ #include <bits/stdc++.h> typedef int64_t int_t; typedef std::vector<int_t> vec; const int_t NM_MAX = 2000; const int_t C_MAX = 50; const int_t INF = 0x3f3f3f3f3f3f3f; struct mach_t { int_t cores, speed, price; }; struct order_t { int_t cores, speed, budg; }; int_t dp[2][NM_MAX + 1][C_MAX + 1]; // optimize memory usage int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int_t n, m; std::cin >> n; std::vector<mach_t> machs(n); for (int_t k = 0; k < n; k++) std::cin >> machs[k].cores >> machs[k].speed >> machs[k].price; std::cin >> m; std::vector<order_t> orders(m); for (int_t k = 0; k < m; k++) std::cin >> orders[k].cores >> orders[k].speed >> orders[k].budg; std::sort(machs.begin(), machs.end(), [](const mach_t& m1, const mach_t& m2) { return m1.speed > m2.speed; }); std::sort(orders.begin(), orders.end(), [](const order_t& o1, const order_t& o2) { return o1.speed > o2.speed; }); for (int_t i = 0; i < 2; i++) { for (int_t j = 0; j <= m; j++) { for (int_t c = 0; c <= C_MAX; c++) dp[i][j][c] = -INF; } } dp[0][0][0] = 0; for (int_t i = 0; i <= n; i++) { for (int_t j = 0; j <= m; j++) { for (int_t c = 0; c <= C_MAX; c++) { dp[(i + 1) % 2][j][c] = -INF; } } for (int_t j = 0; j <= m; j++) { for (int_t c = 0; c <= C_MAX; c++) { if (i < n) dp[(i + 1) % 2][j][c] = std::max(dp[(i + 1) % 2][j][c], dp[i % 2][j][c]); if (j < m) dp[i % 2][j + 1][c] = std::max(dp[i % 2][j + 1][c], dp[i % 2][j][c]); if (i < n) { int_t d = (c + machs[i].cores) % C_MAX; dp[(i + 1) % 2][j][d] = std::max(dp[(i + 1) % 2][j][d], dp[i % 2][j][c] - machs[i].price); } if (i > 0 && j < m && c >= orders[j].cores && machs[i - 1].speed >= orders[j].speed) { int_t d = c - orders[j].cores; dp[i % 2][j + 1][d] = std::max(dp[i % 2][j + 1][d], dp[i % 2][j][c] + orders[j].budg); } if (i < n && j < m && c + machs[i].cores >= orders[j].cores && machs[i].speed >= orders[j].speed) { int_t d = (c + machs[i].cores - orders[j].cores) % C_MAX; dp[(i + 1) % 2][j + 1][d] = std::max(dp[(i + 1) % 2][j + 1][d], dp[i % 2][j][c] + orders[j].budg - machs[i].price); } } } } // for (int_t i = 0; i <= n; i++) { // for (int_t j = 0; j <= m; j++) { // std::cerr << i << ' ' << j << ": "; // for (int_t c = 0; c <= C_MAX; c++) // std::cerr << dp[i][j][c] << ' '; // std::cerr << std::endl; // } // } int_t profit = -INF; for (int_t c = 0; c <= C_MAX; c++) profit = std::max(profit, dp[n % 2][m][c]); std::cout << profit << '\n'; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...