Submission #61842

#TimeUsernameProblemLanguageResultExecution timeMemory
61842BenqHomecoming (BOI18_homecoming)C++11
100 / 100
289 ms119488 KiB
#include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 2000001; #include "homecoming.h" ll cb[2*MX], dp[MX][2][2]; ll get(int l, int r) { // cout << "OH " << cb[r+1]-cb[l] << "\n"; return cb[r+1]-cb[l]; } long long int solve(int N, int K, int *A, int *B) { F0R(i,2*N) cb[i+1] = cb[i]+B[i%N]; ll ans = 0; F0R(i,N) F0R(j,2) F0R(k,2) dp[i][j][k] = -INF; dp[0][0][0] = 0, dp[0][1][1] = A[0]-get(0,K-1); FOR(i,1,N) { F0R(j,2) { dp[i][0][j] = max(dp[i-1][0][j],dp[i-1][1][j]); if (j == 0 || i+K-1 < N) { dp[i][1][j] = max(dp[i-1][1][j]+A[i]-B[(i+K-1)%N],dp[i-1][0][j]+A[i]-get(i,i+K-1)); } else { dp[i][1][j] = max(dp[i-1][1][j]+A[i],dp[i-1][0][j]+A[i]-get(i,N-1)); } // cout << "OH " << i << " " << j << " " << dp[i][0][j] << " " << dp[i][1][j] << "\n"; } } F0R(j,2) F0R(k,2) ans = max(ans,dp[N-1][j][k]); return ans; } /*int main() { ios_base::sync_with_stdio(0); cin.tie(0); int A[3] = {40, 80, 100}; int B[3] = {140, 0, 20}; cout << solve(3,2,A,B); }*/ /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...