Submission #61709

# Submission time Handle Problem Language Result Execution time Memory
61709 2018-07-26T11:36:22 Z Diuven Min-max tree (BOI18_minmaxtree) C++11
100 / 100
560 ms 37400 KB
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int MX=70010, inf=2e9, LG=18;

int n;
pii E[MX];

vector<int> G1[MX];
int nu[MX], ri[MX];
int sp[MX][LG], dep[MX];

void dfs1(int v, int p, int d=1){
    static int now=0;
    nu[v]=++now; ri[v]=nu[v]; dep[v]=d;
    for(int i=1; i<LG; i++) sp[v][i]=sp[sp[v][i-1]][i-1];
    for(int x:G1[v]) if(nu[x]==0) sp[x][0]=v, dfs1(x,v,d+1), ri[v]=max(ri[v], ri[x]);
}

void init_tree(){
    cin>>n;
    for(int i=1; i<n; i++){
        int u,v; cin>>u>>v;
        G1[u].push_back(v);
        G1[v].push_back(u);
        E[i]={u,v};
    }
    dfs1(1,-1);
}

int lca(int u, int v){
    if(dep[u]<dep[v]) swap(u,v);
    for(int i=LG-1; i>=0; i--)
        if(dep[u]-(1<<i)>=dep[v]) u=sp[u][i];
    if(u==v) return u;
    for(int i=LG-1; i>=0; i--)
        if(sp[u][i]!=sp[v][i]) u=sp[u][i], v=sp[v][i];
    return sp[u][0];
}

struct query{
    int v, p, z; bool ismx;
    bool operator < (const query &q) const {
        return nu[v]<nu[q.v];
    }
};
query Q[2*MX];
int q;
int pl[MX], pr[MX];

struct seg_st{
    pii tree1[1<<19];
    int tree2[1<<19], tree3[1<<19];
    void upt(int v, int s, int e, int pos){
        if(pos<s || e<pos) return;
        if(s==e){
            query y=Q[s];
            tree1[v]=pii(dep[y.p], s);
            tree2[v]=(y.ismx ? y.z : inf);
            tree3[v]=(y.ismx ? -1 : y.z);
            return;
        }
        upt(v*2,s,(s+e)/2,pos);
        upt(v*2+1,(s+e)/2+1,e,pos);
        tree1[v]=max(tree1[v*2], tree1[v*2+1]);
        tree2[v]=min(tree2[v*2], tree2[v*2+1]);
        tree3[v]=max(tree3[v*2], tree3[v*2+1]);
    }
    void erase(int pos){
        Q[pos]={0,0,-1,false};
        upt(1,1,q,pos);
    }
    pii qu1(int v, int s, int e, int l, int r){
        if(r<s || e<l) return pii(0,0);
        if(l<=s && e<=r) return tree1[v];
        return max(qu1(v*2,s,(s+e)/2,l,r), qu1(v*2+1,(s+e)/2+1,e,l,r));
    }
    pii qu1(int l, int r){
        l=max(1,l); r=min(r,q);
        if(r<l) return pii(0,0);
        return qu1(1,1,q,l,r);
    }
    int mx(int v, int s, int e, int l, int r){
        if(r<s || e<l) return inf;
        if(l<=s && e<=r) return tree2[v];
        return min(mx(v*2,s,(s+e)/2,l,r), mx(v*2+1,(s+e)/2+1,e,l,r));
    }
    int mx(int l, int r){
        if(r<l) return inf;
        return mx(1,1,q,l,r);
    }
    int mn(int v, int s, int e, int l, int r){
        if(r<s || e<l) return -1;
        if(l<=s && e<=r) return tree3[v];
        return max(mn(v*2,s,(s+e)/2,l,r), mn(v*2+1,(s+e)/2+1,e,l,r));
    }
    int mn(int l, int r){
        if(r<l) return -1;
        return mn(1,1,q,l,r);
    }
} Seg;

void init_seg(){
    for(int i=1; i<=q; i++) Seg.upt(1,1,q,i);
}

void init_query(){
    int k; cin>>k;
    for(int i=1; i<=k; i++){
        char x; int u,v,z; cin>>x>>u>>v>>z;
        if(dep[u]<dep[v]) swap(u,v);
        int p=lca(u,v);
        if(v==p) Q[++q]={u,p,z,x=='M'};
        else Q[++q]={u,p,z,x=='M'}, Q[++q]={v,p,z,x=='M'};
    }
    sort(Q+1, Q+q+1);
    int re[MX];
    for(int i=1; i<=n; i++) re[nu[i]]=i;
    for(int i=1; i<=n; i++){
        query tmp={re[i],0,0,0};
        pl[i]=lower_bound(Q+1, Q+q+1, tmp)-Q;
        pr[i]=upper_bound(Q+1, Q+q+1, tmp)-Q-1;
    }
    // for(int i=1; i<=q; i++) cout<<Q[i].v<<' '<<Q[i].p<<' '<<Q[i].z<<'\n';
    init_seg();
}

struct edge {
    int u, v, a, b;
};
vector<edge> F;

void dfs2(int v, int p){
    for(int x:G1[v]){
        if(x==p) continue;
        dfs2(x,v);
        int l=pl[nu[x]], r=pr[ri[x]];
        pii now=Seg.qu1(l, r);
        while(now.first>=dep[x]){
            Seg.erase(now.second);
            // cout<<"ERASED: "<<now.second<<'\n';
            now=Seg.qu1(l, r);
        }
        int mx=Seg.mx(l,r), mn=Seg.mn(l,r);
        F.push_back({x,v,mx,mn});
        // cout<<"!!: "<<"["<<l<<", "<<r<<"]: "<<v<<' '<<x<<": "<<mx<<' '<<mn<<'\n';
    }
}

vector<pii> G2[MX];
int ans[MX];
bool vis[MX];
vector<int> Z;

bool dfs3(int v, int pidx){
    vis[v]=true;
    bool outed=false;
    for(pii &e:G2[v]){
        int idx=e.second;
        if(idx==pidx || ans[idx]!=0) continue;
        int x=e.first;
        if(vis[x]) ans[idx]=Z[v-1], outed=true;
        else{
            if(!dfs3(x,idx)) ans[idx]=Z[x-1];
            else ans[idx]=Z[v-1], outed=true;
        }
    }
    return outed;
}

void find_edge(){
    dfs2(1,-1);
    for(int i=0; i<(int)F.size(); i++){
        edge &e=F[i];
        // cout<<e.u<<' '<<e.v<<": "<<e.a<<' '<<e.b<<'\n';
        if(e.a==inf && e.b<0) { e.a=e.b=inf; continue; }
        if(e.a==inf) e.a=e.b;
        if(e.b<0) e.b=e.a;
        Z.push_back(e.a);
        Z.push_back(e.b);
    }
    sort(Z.begin(), Z.end());
    Z.resize(unique(Z.begin(), Z.end())-Z.begin());
    for(int i=0; i<(int)F.size(); i++){
        edge &e=F[i];
        int x=lower_bound(Z.begin(), Z.end(), e.a)-Z.begin()+1;
        int y=lower_bound(Z.begin(), Z.end(), e.b)-Z.begin()+1;
        G2[x].push_back({y, i});
        G2[y].push_back({x, i});
    }
    for(int i=1; i<=(int)Z.size(); i++){
        // for(int i=0; i<(int)F.size(); i++) cout<<ans[i]<<' ';
        // cout<<'\n';
        if(!vis[i]) dfs3(i,-1);
    }
}

void show(){
    for(int i=0; i<(int)F.size(); i++){
        cout<<F[i].u<<' '<<F[i].v<<' '<<ans[i]<<'\n';
    }
}

int main(){
    ios::sync_with_stdio(0); cin.tie(0);
    init_tree();
    init_query();
    find_edge();
    show();
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 8 ms 7928 KB Output is correct
2 Correct 10 ms 7928 KB Output is correct
3 Correct 10 ms 7928 KB Output is correct
4 Correct 10 ms 7928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 458 ms 32880 KB Output is correct
2 Correct 458 ms 32880 KB Output is correct
3 Correct 380 ms 32880 KB Output is correct
4 Correct 450 ms 34788 KB Output is correct
5 Correct 436 ms 34788 KB Output is correct
6 Correct 471 ms 34788 KB Output is correct
7 Correct 436 ms 34788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 294 ms 34788 KB Output is correct
2 Correct 234 ms 34788 KB Output is correct
3 Correct 286 ms 34788 KB Output is correct
4 Correct 288 ms 34788 KB Output is correct
5 Correct 289 ms 34788 KB Output is correct
6 Correct 261 ms 34788 KB Output is correct
7 Correct 310 ms 34788 KB Output is correct
8 Correct 296 ms 34788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 7928 KB Output is correct
2 Correct 10 ms 7928 KB Output is correct
3 Correct 10 ms 7928 KB Output is correct
4 Correct 10 ms 7928 KB Output is correct
5 Correct 458 ms 32880 KB Output is correct
6 Correct 458 ms 32880 KB Output is correct
7 Correct 380 ms 32880 KB Output is correct
8 Correct 450 ms 34788 KB Output is correct
9 Correct 436 ms 34788 KB Output is correct
10 Correct 471 ms 34788 KB Output is correct
11 Correct 436 ms 34788 KB Output is correct
12 Correct 294 ms 34788 KB Output is correct
13 Correct 234 ms 34788 KB Output is correct
14 Correct 286 ms 34788 KB Output is correct
15 Correct 288 ms 34788 KB Output is correct
16 Correct 289 ms 34788 KB Output is correct
17 Correct 261 ms 34788 KB Output is correct
18 Correct 310 ms 34788 KB Output is correct
19 Correct 296 ms 34788 KB Output is correct
20 Correct 389 ms 34788 KB Output is correct
21 Correct 388 ms 34788 KB Output is correct
22 Correct 410 ms 34788 KB Output is correct
23 Correct 440 ms 34788 KB Output is correct
24 Correct 384 ms 34788 KB Output is correct
25 Correct 440 ms 37400 KB Output is correct
26 Correct 391 ms 37400 KB Output is correct
27 Correct 524 ms 37400 KB Output is correct
28 Correct 533 ms 37400 KB Output is correct
29 Correct 484 ms 37400 KB Output is correct
30 Correct 560 ms 37400 KB Output is correct
31 Correct 501 ms 37400 KB Output is correct
32 Correct 435 ms 37400 KB Output is correct
33 Correct 415 ms 37400 KB Output is correct
34 Correct 412 ms 37400 KB Output is correct
35 Correct 447 ms 37400 KB Output is correct