Submission #61471

# Submission time Handle Problem Language Result Execution time Memory
61471 2018-07-26T04:54:21 Z ainta(#1774) Min-max tree (BOI18_minmaxtree) C++11
100 / 100
781 ms 49144 KB
#include<cstdio>
#include<algorithm>
#include<vector>
#define N_ 140100
#define SZ 131072
using namespace std;
vector<int>E[N_], Ch[N_];
int C[N_], Heavy[N_], Num[N_], cnt, Ed[N_], ppp[N_], Dep[N_], par[N_][20], INF = (1e9)+10;
int n, m, X[N_], Deg[N_+N_], Q[N_], Res[N_];
void DFS(int a, int pp) {
	C[a] = 1;
	par[a][0] = pp;
	for (int i = 0; i < 17; i++)par[a][i+1] = par[par[a][i]][i];
	for (auto &x : E[a]) {
		if (x == pp)continue;
		Dep[x] = Dep[a] + 1;
		DFS(x, a);
		Ch[a].push_back(x);
		C[a] += C[x];
	}
	int pv = 0;
	for (auto &x : Ch[a]) {
		if (C[pv] < C[x])pv = x;
	}
	Heavy[a] = pv;
}
void DFS2(int a, int pp) {
	Num[a] = ++cnt;
	ppp[a] = pp;
	if (Heavy[a])DFS2(Heavy[a], pp);
	for (auto &x : Ch[a]) {
		if (x != Heavy[a])DFS2(x, x);
	}
	Ed[a] = cnt;
}
struct point {
	int a, b, x, ck;
}w[N_];
int LCA(int a, int b) {
	if (Dep[a] < Dep[b])return LCA(b, a);
	int d = Dep[a] - Dep[b], i = 0;
	while (d) {
		if (d & 1)a = par[a][i];
		d >>= 1; i++;
	}
	for (i = 17; i >= 0; i--)if (par[a][i] != par[b][i])a = par[a][i], b = par[b][i];
	if (a != b)a = par[a][0];
	return a;
}
struct Tree {
	int Mn, Mx;
}IT[SZ+SZ];
void UDT(int nd, int Mn, int Mx) {
	IT[nd].Mn = max(IT[nd].Mn, Mn);
	IT[nd].Mx = min(IT[nd].Mx, Mx);
}
void Put(int b, int e, int Mn, int Mx) {
	b += SZ, e += SZ;
	while (b <= e) {
		if (b & 1)UDT(b, Mn, Mx);
		if (!(e & 1))UDT(e, Mn, Mx);
		b = (b + 1) >> 1, e = (e - 1) >> 1;
	}
}
void Put2(int b, int e, int x, int ck) {
	if (ck == 1) {
		Put(b, e, -INF, x);
	}
	else {
		Put(b, e, x, INF);
	}
}
Tree Get(int a) {
	a += SZ;
	Tree r = { -INF,INF };
	while (a) {
		r.Mn = max(r.Mn, IT[a].Mn);
		r.Mx = min(r.Mx, IT[a].Mx);
		a >>= 1;
	}
	return r;
}
void Go(int a, int pp, int x, int ck) {
	if (Dep[a] <= Dep[pp])return;
	int t = ppp[a];
	if (Dep[t] <= Dep[pp]) {
		Put2(Num[pp] + 1, Num[a], x, ck);
		return;
	}
	Put2(Num[t], Num[a], x, ck);
	Go(par[t][0], pp, x, ck);
}
int Ord(int a) {
	if (a <= 0 || a > 1e9)return 0;
	int t = lower_bound(X + 1, X + m + 1, a) - X;
	return t;
}

class MaxFlow {
public:
	struct Edge {
		int b, e, f;
	}E[1001000];
	vector<int>G[N_+N_];
	int Level[N_ + N_], Q[N_ + N_], PV[N_ + N_], source, sink, n, flow, EC;
	void init(int N, int S, int T) {
		n = N, flow = EC = 0;
		source = S, sink = T;
	}
	void Add_Edge(int a, int b, int f) {
		G[a].push_back(EC);
		G[b].push_back(EC + 1);
		E[EC++] = { a,b,f };
		E[EC++] = { b,a,0 };
	}
	bool GetLevel() {
		int i;
		for (i = 1; i <= n; i++)Level[i] = -1;
		int head = 0, tail = 0;
		Q[++tail] = source, Level[source] = 0;
		while (head < tail) {
			int x = Q[++head];
			for (auto &y : G[x]) {
				if (E[y].f && Level[E[y].e] == -1) {
					Q[++tail] = E[y].e;
					Level[E[y].e] = Level[x] + 1;
				}
			}
		}
		return Level[sink] != -1;
	}
	int BlockFlow(int a, int f) {
		if (a == sink)return f;
		for (int &i = PV[a]; i >= 0; i--) {
			int x = G[a][i];
			if (E[x].f && Level[E[x].e] == Level[a] + 1) {
				int t = BlockFlow(E[x].e, min(f, E[x].f));
				if (t) {
					E[x].f -= t;
					E[x ^ 1].f += t;
					return t;
				}
			}
		}
		return 0;
	}
	void Dinic() {
		int t;
		while (GetLevel()) {
			for (int i = 1; i <= n; i++)PV[i] = G[i].size() - 1;
			while (t = BlockFlow(source, INF)) flow += t;
		}
	}

}G1;

int main() {
	int i, a, b;
	scanf("%d", &n);
	for (i = 1; i < SZ + SZ; i++)IT[i] = { -INF,INF };
	for (i = 1; i < n; i++) {
		scanf("%d%d", &a, &b);
		E[a].push_back(b);
		E[b].push_back(a);
	}
	DFS(1, 0);
	DFS2(1, 1);
	scanf("%d", &m);
	for (i = 1; i <= m; i++) {
		char pp[3];
		int x, ck;
		scanf("%s", pp);
		scanf("%d%d%d", &a, &b, &x);
		X[i] = x;
		if (pp[0] == 'M')ck = 1;
		else ck = 2;
		w[i] = { a,b,x,ck };
		int l = LCA(a, b);
		Go(a, l, x, ck);
		Go(b, l, x, ck);
	}
	sort(X + 1, X + m + 1);
	G1.init(n + m + 1, 1, n + m + 1);
	for (i = 2; i <= n; i++) {
		Tree t = Get(Num[i]);
		int b = Ord(t.Mn);
		int e = Ord(t.Mx);
		Res[i] = t.Mn;
		if (b)G1.Add_Edge(i, n + b, 1);
		if (e)G1.Add_Edge(i, n + e, 1);
	}
	for (i = 2; i <= n; i++) {
		G1.Add_Edge(G1.source, i, 1);
	}
	for (i = 1; i <= m; i++) {
		G1.Add_Edge(n+i, G1.sink, 1);
	}
	G1.Dinic();
	for (i = n+1; i <= n+m; i++) {
		for (auto &t : G1.G[i]) {
			if (G1.E[t].f && G1.E[t].e<=n) {
				Res[G1.E[t].e] = X[i - n];
			}
		}
	}
	for (i = 2; i <= n; i++) {
		printf("%d %d %d\n", par[i][0], i, Res[i]);
	}
}

Compilation message

minmaxtree.cpp: In member function 'void MaxFlow::Dinic()':
minmaxtree.cpp:151:13: warning: suggest parentheses around assignment used as truth value [-Wparentheses]
    while (t = BlockFlow(source, INF)) flow += t;
           ~~^~~~~~~~~~~~~~~~~~~~~~~~
minmaxtree.cpp: In function 'int main()':
minmaxtree.cpp:159:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d", &n);
  ~~~~~^~~~~~~~~~
minmaxtree.cpp:162:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%d%d", &a, &b);
   ~~~~~^~~~~~~~~~~~~~~~
minmaxtree.cpp:168:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d", &m);
  ~~~~~^~~~~~~~~~
minmaxtree.cpp:172:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%s", pp);
   ~~~~~^~~~~~~~~~
minmaxtree.cpp:173:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%d%d%d", &a, &b, &x);
   ~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 17 ms 15608 KB Output is correct
2 Correct 17 ms 15716 KB Output is correct
3 Correct 17 ms 15776 KB Output is correct
4 Correct 20 ms 15776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 419 ms 44652 KB Output is correct
2 Correct 419 ms 44652 KB Output is correct
3 Correct 439 ms 44652 KB Output is correct
4 Correct 475 ms 45968 KB Output is correct
5 Correct 405 ms 45968 KB Output is correct
6 Correct 402 ms 45968 KB Output is correct
7 Correct 418 ms 45968 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 282 ms 45968 KB Output is correct
2 Correct 334 ms 45968 KB Output is correct
3 Correct 364 ms 45968 KB Output is correct
4 Correct 383 ms 45968 KB Output is correct
5 Correct 388 ms 45968 KB Output is correct
6 Correct 394 ms 45968 KB Output is correct
7 Correct 368 ms 45968 KB Output is correct
8 Correct 397 ms 45968 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 15608 KB Output is correct
2 Correct 17 ms 15716 KB Output is correct
3 Correct 17 ms 15776 KB Output is correct
4 Correct 20 ms 15776 KB Output is correct
5 Correct 419 ms 44652 KB Output is correct
6 Correct 419 ms 44652 KB Output is correct
7 Correct 439 ms 44652 KB Output is correct
8 Correct 475 ms 45968 KB Output is correct
9 Correct 405 ms 45968 KB Output is correct
10 Correct 402 ms 45968 KB Output is correct
11 Correct 418 ms 45968 KB Output is correct
12 Correct 282 ms 45968 KB Output is correct
13 Correct 334 ms 45968 KB Output is correct
14 Correct 364 ms 45968 KB Output is correct
15 Correct 383 ms 45968 KB Output is correct
16 Correct 388 ms 45968 KB Output is correct
17 Correct 394 ms 45968 KB Output is correct
18 Correct 368 ms 45968 KB Output is correct
19 Correct 397 ms 45968 KB Output is correct
20 Correct 736 ms 45968 KB Output is correct
21 Correct 360 ms 45968 KB Output is correct
22 Correct 444 ms 45968 KB Output is correct
23 Correct 467 ms 45968 KB Output is correct
24 Correct 629 ms 47116 KB Output is correct
25 Correct 778 ms 49144 KB Output is correct
26 Correct 585 ms 49144 KB Output is correct
27 Correct 739 ms 49144 KB Output is correct
28 Correct 766 ms 49144 KB Output is correct
29 Correct 676 ms 49144 KB Output is correct
30 Correct 701 ms 49144 KB Output is correct
31 Correct 746 ms 49144 KB Output is correct
32 Correct 781 ms 49144 KB Output is correct
33 Correct 512 ms 49144 KB Output is correct
34 Correct 550 ms 49144 KB Output is correct
35 Correct 642 ms 49144 KB Output is correct