#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 200005;
template<int SZ> struct DSU {
int par[SZ], sz[SZ], L[SZ], R[SZ];
ll val[SZ];
DSU() {
F0R(i,SZ) par[i] = L[i] = R[i] = i, sz[i] = 1;
}
int get(int x) { // path compression
if (par[x] != x) par[x] = get(par[x]);
return par[x];
}
void unite(int x, int y) { // union-by-rank
x = get(x), y = get(y);
if (sz[x] < sz[y]) swap(x,y);
sz[x] += sz[y], par[y] = x;
L[x] = min(L[x],L[y]);
R[x] = max(R[x],R[y]);
}
};
DSU<MX> D;
int N, A[MX];
ll cans;
set<pl> cur;
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N;
FOR(i,1,N+1) {
cin >> A[i];
cur.insert({A[i],i});
D.val[i] = A[i];
}
FOR(i,1,(N+1)/2+1) {
pl tmp = *cur.rbegin(); cur.erase(tmp);
tmp.s = D.get(tmp.s);
cans += tmp.f;
cout << cans << "\n";
int l = D.get(D.L[tmp.s]-1), r = D.get(D.R[tmp.s]+1);
ll nval = D.val[l]+D.val[r]-D.val[tmp.s];
if (D.L[l] != 0) cur.erase({D.val[l],l});
if (D.R[r] != N+1) cur.erase({D.val[r],r});
D.unite(l,tmp.s), D.unite(tmp.s,r);
tmp.s = D.get(tmp.s);
if (D.L[tmp.s] != 0 && D.R[tmp.s] != N+1)
cur.insert({D.val[tmp.s] = nval,tmp.s});
}
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
7 ms |
3576 KB |
Output is correct |
2 |
Correct |
7 ms |
3812 KB |
Output is correct |
3 |
Correct |
7 ms |
3812 KB |
Output is correct |
4 |
Correct |
9 ms |
3908 KB |
Output is correct |
5 |
Correct |
7 ms |
3908 KB |
Output is correct |
6 |
Correct |
9 ms |
3908 KB |
Output is correct |
7 |
Correct |
7 ms |
3908 KB |
Output is correct |
8 |
Correct |
9 ms |
3908 KB |
Output is correct |
9 |
Correct |
8 ms |
3908 KB |
Output is correct |
10 |
Correct |
8 ms |
3908 KB |
Output is correct |
11 |
Correct |
8 ms |
3908 KB |
Output is correct |
12 |
Correct |
7 ms |
3908 KB |
Output is correct |
13 |
Correct |
7 ms |
3908 KB |
Output is correct |
14 |
Correct |
7 ms |
3908 KB |
Output is correct |
15 |
Correct |
9 ms |
3908 KB |
Output is correct |
16 |
Correct |
7 ms |
3908 KB |
Output is correct |
17 |
Correct |
9 ms |
3948 KB |
Output is correct |
18 |
Correct |
9 ms |
3968 KB |
Output is correct |
19 |
Correct |
8 ms |
3968 KB |
Output is correct |
20 |
Correct |
7 ms |
3968 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
7 ms |
3576 KB |
Output is correct |
2 |
Correct |
7 ms |
3812 KB |
Output is correct |
3 |
Correct |
7 ms |
3812 KB |
Output is correct |
4 |
Correct |
9 ms |
3908 KB |
Output is correct |
5 |
Correct |
7 ms |
3908 KB |
Output is correct |
6 |
Correct |
9 ms |
3908 KB |
Output is correct |
7 |
Correct |
7 ms |
3908 KB |
Output is correct |
8 |
Correct |
9 ms |
3908 KB |
Output is correct |
9 |
Correct |
8 ms |
3908 KB |
Output is correct |
10 |
Correct |
8 ms |
3908 KB |
Output is correct |
11 |
Correct |
8 ms |
3908 KB |
Output is correct |
12 |
Correct |
7 ms |
3908 KB |
Output is correct |
13 |
Correct |
7 ms |
3908 KB |
Output is correct |
14 |
Correct |
7 ms |
3908 KB |
Output is correct |
15 |
Correct |
9 ms |
3908 KB |
Output is correct |
16 |
Correct |
7 ms |
3908 KB |
Output is correct |
17 |
Correct |
9 ms |
3948 KB |
Output is correct |
18 |
Correct |
9 ms |
3968 KB |
Output is correct |
19 |
Correct |
8 ms |
3968 KB |
Output is correct |
20 |
Correct |
7 ms |
3968 KB |
Output is correct |
21 |
Correct |
868 ms |
20228 KB |
Output is correct |
22 |
Correct |
759 ms |
20356 KB |
Output is correct |
23 |
Correct |
719 ms |
20356 KB |
Output is correct |
24 |
Correct |
245 ms |
20356 KB |
Output is correct |
25 |
Correct |
267 ms |
20356 KB |
Output is correct |
26 |
Correct |
209 ms |
20356 KB |
Output is correct |
27 |
Correct |
251 ms |
20356 KB |
Output is correct |
28 |
Correct |
241 ms |
20356 KB |
Output is correct |
29 |
Correct |
250 ms |
20356 KB |
Output is correct |
30 |
Correct |
247 ms |
20356 KB |
Output is correct |
31 |
Correct |
238 ms |
20356 KB |
Output is correct |
32 |
Correct |
322 ms |
20356 KB |
Output is correct |
33 |
Correct |
446 ms |
20356 KB |
Output is correct |
34 |
Correct |
432 ms |
20356 KB |
Output is correct |
35 |
Correct |
360 ms |
20356 KB |
Output is correct |
36 |
Correct |
564 ms |
20356 KB |
Output is correct |
37 |
Correct |
737 ms |
20356 KB |
Output is correct |
38 |
Correct |
565 ms |
20356 KB |
Output is correct |
39 |
Correct |
227 ms |
20356 KB |
Output is correct |
40 |
Correct |
241 ms |
20356 KB |
Output is correct |
41 |
Correct |
209 ms |
20356 KB |
Output is correct |
42 |
Correct |
244 ms |
20356 KB |
Output is correct |
43 |
Correct |
204 ms |
20356 KB |
Output is correct |
44 |
Correct |
270 ms |
20356 KB |
Output is correct |
45 |
Correct |
317 ms |
20356 KB |
Output is correct |
46 |
Correct |
256 ms |
20356 KB |
Output is correct |
47 |
Correct |
243 ms |
20356 KB |
Output is correct |
48 |
Correct |
348 ms |
20356 KB |
Output is correct |
49 |
Correct |
511 ms |
20356 KB |
Output is correct |
50 |
Correct |
362 ms |
20356 KB |
Output is correct |