Submission #61405

# Submission time Handle Problem Language Result Execution time Memory
61405 2018-07-25T19:02:58 Z Benq Candies (JOI18_candies) C++11
100 / 100
868 ms 20356 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)

#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()

const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 200005;

template<int SZ> struct DSU {
    int par[SZ], sz[SZ], L[SZ], R[SZ];
    ll val[SZ];
    
    DSU() {
        F0R(i,SZ) par[i] = L[i] = R[i] = i, sz[i] = 1;
    }
    
    int get(int x) { // path compression
    	if (par[x] != x) par[x] = get(par[x]);
    	return par[x];
    }
    
    void unite(int x, int y) { // union-by-rank
    	x = get(x), y = get(y);
    	if (sz[x] < sz[y]) swap(x,y);
    	sz[x] += sz[y], par[y] = x;
    	L[x] = min(L[x],L[y]);
    	R[x] = max(R[x],R[y]);
    }
};

DSU<MX> D;
int N, A[MX];
ll cans;
set<pl> cur;

int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N;
    FOR(i,1,N+1) {
        cin >> A[i];
        cur.insert({A[i],i});
        D.val[i] = A[i];
    }
    FOR(i,1,(N+1)/2+1) {
        pl tmp = *cur.rbegin(); cur.erase(tmp);
        tmp.s = D.get(tmp.s);
        cans += tmp.f;
        cout << cans << "\n";
        
        int l = D.get(D.L[tmp.s]-1), r = D.get(D.R[tmp.s]+1);
        ll nval = D.val[l]+D.val[r]-D.val[tmp.s];
        if (D.L[l] != 0) cur.erase({D.val[l],l});
        if (D.R[r] != N+1) cur.erase({D.val[r],r});
        
        D.unite(l,tmp.s), D.unite(tmp.s,r);
        tmp.s = D.get(tmp.s);
        if (D.L[tmp.s] != 0 && D.R[tmp.s] != N+1)
            cur.insert({D.val[tmp.s] = nval,tmp.s});
    }
}

/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 7 ms 3576 KB Output is correct
2 Correct 7 ms 3812 KB Output is correct
3 Correct 7 ms 3812 KB Output is correct
4 Correct 9 ms 3908 KB Output is correct
5 Correct 7 ms 3908 KB Output is correct
6 Correct 9 ms 3908 KB Output is correct
7 Correct 7 ms 3908 KB Output is correct
8 Correct 9 ms 3908 KB Output is correct
9 Correct 8 ms 3908 KB Output is correct
10 Correct 8 ms 3908 KB Output is correct
11 Correct 8 ms 3908 KB Output is correct
12 Correct 7 ms 3908 KB Output is correct
13 Correct 7 ms 3908 KB Output is correct
14 Correct 7 ms 3908 KB Output is correct
15 Correct 9 ms 3908 KB Output is correct
16 Correct 7 ms 3908 KB Output is correct
17 Correct 9 ms 3948 KB Output is correct
18 Correct 9 ms 3968 KB Output is correct
19 Correct 8 ms 3968 KB Output is correct
20 Correct 7 ms 3968 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 3576 KB Output is correct
2 Correct 7 ms 3812 KB Output is correct
3 Correct 7 ms 3812 KB Output is correct
4 Correct 9 ms 3908 KB Output is correct
5 Correct 7 ms 3908 KB Output is correct
6 Correct 9 ms 3908 KB Output is correct
7 Correct 7 ms 3908 KB Output is correct
8 Correct 9 ms 3908 KB Output is correct
9 Correct 8 ms 3908 KB Output is correct
10 Correct 8 ms 3908 KB Output is correct
11 Correct 8 ms 3908 KB Output is correct
12 Correct 7 ms 3908 KB Output is correct
13 Correct 7 ms 3908 KB Output is correct
14 Correct 7 ms 3908 KB Output is correct
15 Correct 9 ms 3908 KB Output is correct
16 Correct 7 ms 3908 KB Output is correct
17 Correct 9 ms 3948 KB Output is correct
18 Correct 9 ms 3968 KB Output is correct
19 Correct 8 ms 3968 KB Output is correct
20 Correct 7 ms 3968 KB Output is correct
21 Correct 868 ms 20228 KB Output is correct
22 Correct 759 ms 20356 KB Output is correct
23 Correct 719 ms 20356 KB Output is correct
24 Correct 245 ms 20356 KB Output is correct
25 Correct 267 ms 20356 KB Output is correct
26 Correct 209 ms 20356 KB Output is correct
27 Correct 251 ms 20356 KB Output is correct
28 Correct 241 ms 20356 KB Output is correct
29 Correct 250 ms 20356 KB Output is correct
30 Correct 247 ms 20356 KB Output is correct
31 Correct 238 ms 20356 KB Output is correct
32 Correct 322 ms 20356 KB Output is correct
33 Correct 446 ms 20356 KB Output is correct
34 Correct 432 ms 20356 KB Output is correct
35 Correct 360 ms 20356 KB Output is correct
36 Correct 564 ms 20356 KB Output is correct
37 Correct 737 ms 20356 KB Output is correct
38 Correct 565 ms 20356 KB Output is correct
39 Correct 227 ms 20356 KB Output is correct
40 Correct 241 ms 20356 KB Output is correct
41 Correct 209 ms 20356 KB Output is correct
42 Correct 244 ms 20356 KB Output is correct
43 Correct 204 ms 20356 KB Output is correct
44 Correct 270 ms 20356 KB Output is correct
45 Correct 317 ms 20356 KB Output is correct
46 Correct 256 ms 20356 KB Output is correct
47 Correct 243 ms 20356 KB Output is correct
48 Correct 348 ms 20356 KB Output is correct
49 Correct 511 ms 20356 KB Output is correct
50 Correct 362 ms 20356 KB Output is correct