Submission #60331

# Submission time Handle Problem Language Result Execution time Memory
60331 2018-07-24T01:56:26 Z Benq Skyscraper (JOI16_skyscraper) C++11
100 / 100
717 ms 3212 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)

#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()

const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;

int mul(int a, int b) { return (ll)a*b%MOD; }
int ad(int a, int b) { return (a+b)%MOD; }

void MUL(int& a, int b) { a = mul(a,b); }
void AD(int& a, int b) { a = ad(a,b); }
void MN(int& a, int b) { a = min(a,b); }

int N,L, mn[3][101], mnTMP[3][101]; 
int dp[3][101][1001], dpTMP[3][101][1001];
vi A;

void tri(int a, int b, int c, int d) {
    if (c > mnTMP[a][b]+L) return;
    AD(dpTMP[a][b][c-mnTMP[a][b]],d);
}

void triEnd(int a, int b, int c, int x) {
    if (!a) return;
    int val = mul(a,dp[a][b][c]);
    c += mn[a][b]+x; a --;
    F0R(i,2) F0R(j,2) tri(a+i,b+j,c-i*x-2*j*x,val); 
}

void triMid(int a, int b, int c, int x) {
    if (!b) return;
    int val = mul(b,dp[a][b][c]);
    c += mn[a][b]+2*x; b --;
    F0R(i,2) F0R(j,2) tri(a,b+i+j,c-2*i*x-2*j*x,val);
}

void process(int x) {
    F0R(i,3) F0R(j,N+1) {
        mnTMP[i][j] = MOD;
        F0R(k,L+1) dpTMP[i][j][k] = 0;
    }
    
    F0R(i,3) F0R(j,N+1) if (mn[i][j] != MOD) {
        if (i) F0R(I,2) F0R(J,2) MN(mnTMP[i-1+I][j+J],mn[i][j]+x-I*x-2*J*x);
        if (j) F0R(I,2) F0R(J,2) MN(mnTMP[i][j-1+I+J],mn[i][j]+2*x-2*I*x-2*J*x);
    }

    F0R(i,3) F0R(j,N+1) if (mn[i][j] != MOD) F0R(k,L+1) {
        triEnd(i,j,k,x);
        triMid(i,j,k,x);
    }
    
    F0R(i,3) F0R(j,N+1) {
        mn[i][j] = mnTMP[i][j];
        F0R(k,L+1) dp[i][j][k] = dpTMP[i][j][k];
    }
    
    // cout << "AH " << mn[0][0] << "\n";
}

void finish() {
    int ans = 0;
    // cout << "ZZ " << mn[0][0] << "\n";
    F0R(i,L-mn[0][0]+1) AD(ans,dp[0][0][i]);
    cout << ans;
}

void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> L; A.resize(N);
    F0R(i,N) cin >> A[i];
    sort(all(A));
    //cout << A[0] << " " << A[N-1] << "\n";
}

void init(int x) {
    F0R(i,3) F0R(j,N+1) mn[i][j] = MOD;
    F0R(i,2) F0R(j,2) MN(mn[i+j][0],-(i+j)*A[0]);
    F0R(i,2) F0R(j,2) dp[i+j][0][0] ++;
}

int main() {
    input();
    init(A[0]);
    FOR(i,1,sz(A)) process(A[i]);
    finish();
}

/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 4 ms 376 KB Output is correct
2 Correct 4 ms 492 KB Output is correct
3 Correct 4 ms 492 KB Output is correct
4 Correct 5 ms 568 KB Output is correct
5 Correct 7 ms 636 KB Output is correct
6 Correct 5 ms 640 KB Output is correct
7 Correct 3 ms 644 KB Output is correct
8 Correct 4 ms 776 KB Output is correct
9 Correct 8 ms 776 KB Output is correct
10 Correct 4 ms 776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 960 KB Output is correct
2 Correct 4 ms 968 KB Output is correct
3 Correct 6 ms 968 KB Output is correct
4 Correct 4 ms 968 KB Output is correct
5 Correct 5 ms 968 KB Output is correct
6 Correct 4 ms 968 KB Output is correct
7 Correct 2 ms 968 KB Output is correct
8 Correct 5 ms 968 KB Output is correct
9 Correct 5 ms 968 KB Output is correct
10 Correct 5 ms 968 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 376 KB Output is correct
2 Correct 4 ms 492 KB Output is correct
3 Correct 4 ms 492 KB Output is correct
4 Correct 5 ms 568 KB Output is correct
5 Correct 7 ms 636 KB Output is correct
6 Correct 5 ms 640 KB Output is correct
7 Correct 3 ms 644 KB Output is correct
8 Correct 4 ms 776 KB Output is correct
9 Correct 8 ms 776 KB Output is correct
10 Correct 4 ms 776 KB Output is correct
11 Correct 3 ms 960 KB Output is correct
12 Correct 4 ms 968 KB Output is correct
13 Correct 6 ms 968 KB Output is correct
14 Correct 4 ms 968 KB Output is correct
15 Correct 5 ms 968 KB Output is correct
16 Correct 4 ms 968 KB Output is correct
17 Correct 2 ms 968 KB Output is correct
18 Correct 5 ms 968 KB Output is correct
19 Correct 5 ms 968 KB Output is correct
20 Correct 5 ms 968 KB Output is correct
21 Correct 7 ms 1548 KB Output is correct
22 Correct 364 ms 2576 KB Output is correct
23 Correct 528 ms 3120 KB Output is correct
24 Correct 552 ms 3128 KB Output is correct
25 Correct 569 ms 3184 KB Output is correct
26 Correct 506 ms 3184 KB Output is correct
27 Correct 160 ms 3184 KB Output is correct
28 Correct 205 ms 3184 KB Output is correct
29 Correct 454 ms 3212 KB Output is correct
30 Correct 717 ms 3212 KB Output is correct