#include <cstdio>
#include <set>
#include <algorithm>
#include <cassert>
using namespace std;
typedef long long ll;
typedef pair <int, int> ii;
const int Maxn = 100005; // Max number of points
const int Maxe = 2 * Maxn; // Max number of events
const int Maxr = 4; // Max number of rotations
// Element in the set ("Line Sweep")
struct element {
int y, ind, delt;
element(int y = 0, int ind = 0, int delt = 0): y(y), ind(ind), delt(delt) {}
bool operator <(const element &e) const {
return y < e.y;
}
};
// Event in "Line Sweep"
struct event {
int x;
element el;
bool en;
event(int x = 0, element el = element(), bool en = false): x(x), el(el), en(en) { }
bool operator <(const event &e) const {
if (x != e.x) return x < e.x;
if (en != e.en) return en < e.en;
return el.y < e.el.y;
}
};
// "Candidate" split line
struct line {
int x, y1, y2;
line(int x = 0, int y1 = 0, int y2 = 0): x(x), y1(y1), y2(y2) {}
bool operator <(const line &l) const {
if (x != l.x) return x < l.x;
if (y1 != l.y1) return y1 < l.y1;
return y2 < l.y2;
}
};
int n; // Number of points
ii p[Maxn]; // Points of polygon
ll num[Maxn]; // Enumerated points by perimeter
event E[Maxe]; // Events in "Line Sweep"
int elen;
set <line> Spl; // Can become split line
ii a[Maxn], b[Maxn]; // Candidates to compare
int alen, blen; // Number of points of candidates
void Move(ii p[], int len, int &nil)
{
nil = 0;
for (int i = 0; i < len; i++)
if (p[i] < p[nil]) nil = i;
ii d = ii(-p[nil].first, -p[nil].second);
if (d == ii(0, 0)) return;
for (int i = 0; i < len; i++)
p[i] = ii(p[i].first + d.first, p[i].second + d.second);
}
void Rotate(ii p[], int len)
{
for (int i = 0; i < len; i++)
p[i] = ii(p[i].second, -p[i].first);
}
void Reflect(ii p[], int len)
{
for (int i = 0; i < len; i++)
p[i].second = -p[i].second;
reverse(p, p + len);
}
bool trivialCompare(ii a[], int alen, int anil, ii b[], int blen, int bnil)
{
for (int i = 0; i < alen; i++) // alen = blen
if (a[(anil + i) % alen] != b[(bnil + i) % blen])
return false;
return true;
}
bool spinAround(ii a[], int alen, int anil, ii b[], int blen)
{
int bnil; // The leftmost (the lowest) point
for (int i = 0; i < Maxr; i++) {
Rotate(b, blen);
Move(b, blen, bnil);
if (trivialCompare(a, alen, anil, b, blen, bnil))
return true;
}
return false;
}
bool complexCompare(ii a[], int alen, ii b[], int blen)
{
if (alen != blen) return false;
int anil; // The leftmost (the lowest) point
Move(a, alen, anil);
if (spinAround(a, alen, anil, b, blen)) return true;
Reflect(b, blen);
return spinAround(a, alen, anil, b, blen);
}
ll crossProduct(ll ax, ll ay, ll bx, ll by) { return ax * by - ay * bx; }
ll inLine(ii a, ii b, ii c)
{
return crossProduct(b.first - a.first, b.second - a.second,
c.first - a.first, c.second - a.second) == 0;
}
void addPoint(ii p[], int &len, ii toadd)
{
if (len == 0) p[len++] = toadd;
else if (toadd != p[len - 1]) {
if (len >= 2 && inLine(p[len - 2], p[len - 1], toadd))
len--;
p[len++] = toadd;
}
}
void Construct(ii p[], int len, ii a[], int &alen, int s1, int s2, int x, int y1, int y2)
{
alen = 0;
addPoint(a, alen, ii(x, y1));
int pnt = s1;
do {
pnt = (pnt + 1) % len;
addPoint(a, alen, p[pnt]);
} while (pnt != s2);
addPoint(a, alen, ii(x, y2));
if (alen >= 3 && inLine(a[alen - 2], a[alen - 1], a[0]))
alen--;
if (alen >= 3 && inLine(a[alen - 1], a[0], a[1])) {
alen--;
for (int i = 0; i < alen; i++)
a[i] = a[i + 1];
}
}
void Split(ii p[], int len, int x, int y1, int y2, ii a[], int &alen, ii b[], int &blen)
{
int s1 = 0;
while (!(p[s1].second == y1 && p[(s1 + 1) % len].second == y1 &&
p[(s1 + 1) % len].first <= x && x <= p[s1].first))
s1 = (s1 + 1) % len;
int s2 = 0;
while (!(p[s2].second == y2 && p[(s2 + 1) % len].second == y2 &&
p[s2].first <= x && x <= p[(s2 + 1) % len].first))
s2 = (s2 + 1) % len;
Construct(p, len, a, alen, s1, s2, x, y1, y2);
Construct(p, len, b, blen, s2, s1, x, y2, y1);
}
void insertEvents(ii p[], int y, int a, int b, int delt)
{
element el = element(y, a, delt);
E[elen++] = event(p[a].first, el, false);
E[elen++] = event(p[b].first, el, true);
}
ll getId(ll num[], const element &el, int curx)
{
return num[el.ind] + el.delt * (curx - p[el.ind].first);
}
int canGrow(ii p[], int len, const element &el, int curx)
{
int pi = (el.ind - 1 + len) % len;
int ni = (el.ind + 1) % len;
return (el.delt == 1? p[ni].first: p[pi].first) - curx;
}
bool getNear(const element &el, set <element> &S, set <element>::iterator &it)
{
it = S.find(el);
if (el.delt == 1)
if (it == S.begin()) return false;
else it--;
else {
it++;
if (it == S.end()) return false;
}
return el.delt != it->delt;
}
void solveFor(const element &el, set <element> &S, ll num[], ii p[], int len, int curx, set <line> &Spl, bool hardcomp)
{
set <element>::iterator it;
if (!getNear(el, S, it)) return;
ll id1 = getId(num, el, curx);
ll id2 = getId(num, *it, curx);
int cangrow = min(canGrow(p, len, el, curx), canGrow(p, len, *it, curx));
ll did = el.delt == 1? id1 - id2: id2 - id1;
if (did < 0) did += num[len];
ll grow = (num[len] / 2 - did) / 2;
if ((!hardcomp && grow >= 0 || grow > 0) && grow <= cangrow && 2 * (did + 2 * grow) == num[len])
Spl.insert(line(curx + grow, min(el.y, it->y), max(el.y, it->y)));
}
bool getVerticalSplit(ii p[], int len, int &x, int &y1, int &y2)
{
// Prepare perimeter
num[0] = 0;
for (int i = 1; i <= len; i++)
num[i] = num[i - 1] + abs(p[i % len].first - p[i - 1].first) +
abs(p[i % len].second - p[i - 1].second);
// Prepare events
elen = 0;
for (int i = 0; i < len; i++) {
int ni = (i + 1) % len;
if (p[i].second == p[ni].second)
if (p[i].first < p[ni].first)
insertEvents(p, p[i].second, i, ni, 1);
else insertEvents(p, p[i].second, ni, i, -1);
}
sort(E, E + elen);
// Line Sweep
set <element> S;
for (int i = 0, j; i < elen; i = j) {
j = i;
int curx = E[i].x;
if (!Spl.empty()) curx = min(curx, Spl.begin()->x);
while (j < elen && curx == E[j].x && !E[j].en) {
S.insert(E[j].el);
solveFor(E[j].el, S, num, p, len, curx, Spl, false);
j++;
}
set <line>::iterator it = Spl.begin();
while (it != Spl.end() && curx == it->x) {
set <element>::iterator it2 = S.lower_bound(element(it->y1, 0, 0));
if (it2 == S.end() || it2->y != it->y1) { Spl.erase(it++); continue; }
it2++;
if (it2 == S.end() || it2->y != it->y2) { Spl.erase(it++); continue; }
Split(p, len, it->x, it->y1, it->y2, a, alen, b, blen);
if (complexCompare(a, alen, b, blen)) {
x = it->x; y1 = it->y1; y2 = it->y2;
return true;
}
Spl.erase(it++);
}
while (j < elen && curx == E[j].x) {
set <element>::iterator it = S.find(E[j].el);
S.erase(it++);
if (it != S.end())
solveFor(*it, S, num, p, len, curx, Spl, true);
j++;
}
}
return false;
}
void Init()
{
scanf("%d", &n);
int lm = 0; // leftmost
for (int i = 0; i < n; i++) {
scanf("%d %d", &p[i].first, &p[i].second);
if (p[i] < p[lm]) lm = i;
}
if (!(p[lm].second < p[(lm + 1) % n].second))
reverse(p, p + n); // Make clockwise
}
int main()
{
Init();
int x, y1, y2;
if (getVerticalSplit(p, n, x, y1, y2))
printf("%d %d %d %d\n", x, y1, x, y2);
else {
Rotate(p, n);
if (getVerticalSplit(p, n, x, y1, y2))
printf("%d %d %d %d\n", -y2, x, -y1, x); // Rotating back
else printf("NO\n");
}
return 0;
}
Compilation message
demarcation.cpp: In function 'void solveFor(const element&, std::set<element>&, ll*, ii*, int, int, std::set<line>&, bool)':
demarcation.cpp:206:17: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
if ((!hardcomp && grow >= 0 || grow > 0) && grow <= cangrow && 2 * (did + 2 * grow) == num[len])
^
demarcation.cpp: In function 'bool getVerticalSplit(ii*, int, int&, int&, int&)':
demarcation.cpp:221:6: warning: suggest explicit braces to avoid ambiguous 'else' [-Wparentheses]
if (p[i].second == p[ni].second)
^
demarcation.cpp: In function 'void Init()':
demarcation.cpp:267:17: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
scanf("%d", &n);
^
demarcation.cpp:270:44: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
scanf("%d %d", &p[i].first, &p[i].second);
^
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
8216 KB |
Output is correct |
2 |
Correct |
0 ms |
8216 KB |
Output is correct |
3 |
Correct |
0 ms |
8216 KB |
Output is correct |
4 |
Correct |
3 ms |
8216 KB |
Output is correct |
5 |
Correct |
0 ms |
8216 KB |
Output is correct |
6 |
Correct |
0 ms |
8216 KB |
Output is correct |
7 |
Correct |
0 ms |
8216 KB |
Output is correct |
8 |
Correct |
3 ms |
8216 KB |
Output is correct |
9 |
Correct |
46 ms |
8216 KB |
Output is correct |
10 |
Correct |
0 ms |
8216 KB |
Output is correct |
11 |
Correct |
3 ms |
8216 KB |
Output is correct |
12 |
Correct |
3 ms |
8216 KB |
Output is correct |
13 |
Correct |
3 ms |
8216 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
8216 KB |
Output is correct |
2 |
Correct |
0 ms |
8216 KB |
Output is correct |
3 |
Correct |
3 ms |
8216 KB |
Output is correct |
4 |
Correct |
0 ms |
8216 KB |
Output is correct |
5 |
Correct |
0 ms |
8216 KB |
Output is correct |
6 |
Correct |
0 ms |
8216 KB |
Output is correct |
7 |
Correct |
0 ms |
8216 KB |
Output is correct |
8 |
Correct |
3 ms |
8216 KB |
Output is correct |
9 |
Correct |
0 ms |
8216 KB |
Output is correct |
10 |
Correct |
0 ms |
8216 KB |
Output is correct |
11 |
Correct |
3 ms |
8216 KB |
Output is correct |
12 |
Correct |
0 ms |
8216 KB |
Output is correct |
13 |
Correct |
0 ms |
8216 KB |
Output is correct |
14 |
Correct |
3 ms |
8216 KB |
Output is correct |
15 |
Correct |
0 ms |
8216 KB |
Output is correct |
16 |
Correct |
0 ms |
8216 KB |
Output is correct |
17 |
Correct |
0 ms |
8216 KB |
Output is correct |
18 |
Correct |
0 ms |
8216 KB |
Output is correct |
19 |
Correct |
0 ms |
8216 KB |
Output is correct |
20 |
Correct |
0 ms |
8216 KB |
Output is correct |
21 |
Correct |
0 ms |
8216 KB |
Output is correct |
22 |
Correct |
3 ms |
8216 KB |
Output is correct |
23 |
Correct |
0 ms |
8216 KB |
Output is correct |
24 |
Correct |
3 ms |
8216 KB |
Output is correct |
25 |
Correct |
0 ms |
8216 KB |
Output is correct |
26 |
Correct |
0 ms |
8216 KB |
Output is correct |
27 |
Correct |
0 ms |
8216 KB |
Output is correct |
28 |
Correct |
3 ms |
8216 KB |
Output is correct |
29 |
Correct |
0 ms |
8216 KB |
Output is correct |
30 |
Correct |
0 ms |
8216 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
8216 KB |
Output is correct |
2 |
Correct |
0 ms |
8216 KB |
Output is correct |
3 |
Correct |
3 ms |
8216 KB |
Output is correct |
4 |
Correct |
0 ms |
8216 KB |
Output is correct |
5 |
Correct |
0 ms |
8216 KB |
Output is correct |
6 |
Correct |
0 ms |
8216 KB |
Output is correct |
7 |
Correct |
3 ms |
8216 KB |
Output is correct |
8 |
Correct |
0 ms |
8216 KB |
Output is correct |
9 |
Correct |
0 ms |
8216 KB |
Output is correct |
10 |
Correct |
0 ms |
8216 KB |
Output is correct |
11 |
Correct |
0 ms |
8216 KB |
Output is correct |
12 |
Correct |
0 ms |
8216 KB |
Output is correct |
13 |
Correct |
3 ms |
8216 KB |
Output is correct |
14 |
Correct |
3 ms |
8216 KB |
Output is correct |
15 |
Correct |
3 ms |
8216 KB |
Output is correct |
16 |
Correct |
0 ms |
8216 KB |
Output is correct |
17 |
Correct |
3 ms |
8216 KB |
Output is correct |
18 |
Correct |
0 ms |
8216 KB |
Output is correct |
19 |
Correct |
3 ms |
8216 KB |
Output is correct |
20 |
Correct |
0 ms |
8216 KB |
Output is correct |
21 |
Correct |
0 ms |
8216 KB |
Output is correct |
22 |
Correct |
0 ms |
8216 KB |
Output is correct |
23 |
Correct |
3 ms |
8216 KB |
Output is correct |
24 |
Correct |
0 ms |
8216 KB |
Output is correct |
25 |
Correct |
0 ms |
8216 KB |
Output is correct |
26 |
Correct |
0 ms |
8216 KB |
Output is correct |
27 |
Correct |
3 ms |
8216 KB |
Output is correct |
28 |
Correct |
0 ms |
8216 KB |
Output is correct |
29 |
Correct |
0 ms |
8216 KB |
Output is correct |
30 |
Correct |
3 ms |
8216 KB |
Output is correct |
31 |
Correct |
0 ms |
8216 KB |
Output is correct |
32 |
Correct |
0 ms |
8216 KB |
Output is correct |
33 |
Correct |
3 ms |
8216 KB |
Output is correct |
34 |
Correct |
3 ms |
8216 KB |
Output is correct |
35 |
Correct |
0 ms |
8216 KB |
Output is correct |
36 |
Correct |
0 ms |
8216 KB |
Output is correct |
37 |
Correct |
0 ms |
8216 KB |
Output is correct |
38 |
Correct |
0 ms |
8216 KB |
Output is correct |
39 |
Correct |
0 ms |
8216 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
8216 KB |
Output is correct |
2 |
Correct |
3 ms |
8216 KB |
Output is correct |
3 |
Correct |
3 ms |
8216 KB |
Output is correct |
4 |
Correct |
3 ms |
8216 KB |
Output is correct |
5 |
Correct |
3 ms |
8216 KB |
Output is correct |
6 |
Correct |
3 ms |
8216 KB |
Output is correct |
7 |
Correct |
0 ms |
8216 KB |
Output is correct |
8 |
Correct |
0 ms |
8216 KB |
Output is correct |
9 |
Correct |
46 ms |
8216 KB |
Output is correct |
10 |
Correct |
3 ms |
8216 KB |
Output is correct |
11 |
Correct |
0 ms |
8216 KB |
Output is correct |
12 |
Correct |
0 ms |
8216 KB |
Output is correct |
13 |
Correct |
0 ms |
8216 KB |
Output is correct |
14 |
Correct |
3 ms |
8216 KB |
Output is correct |
15 |
Correct |
0 ms |
8216 KB |
Output is correct |
16 |
Correct |
0 ms |
8216 KB |
Output is correct |
17 |
Correct |
0 ms |
8216 KB |
Output is correct |
18 |
Correct |
0 ms |
8216 KB |
Output is correct |
19 |
Correct |
0 ms |
8216 KB |
Output is correct |
20 |
Correct |
0 ms |
8216 KB |
Output is correct |
21 |
Correct |
0 ms |
8216 KB |
Output is correct |
22 |
Correct |
3 ms |
8216 KB |
Output is correct |
23 |
Correct |
0 ms |
8216 KB |
Output is correct |
24 |
Correct |
3 ms |
8216 KB |
Output is correct |
25 |
Correct |
0 ms |
8216 KB |
Output is correct |
26 |
Correct |
3 ms |
8216 KB |
Output is correct |
27 |
Correct |
0 ms |
8216 KB |
Output is correct |
28 |
Correct |
3 ms |
8216 KB |
Output is correct |
29 |
Correct |
0 ms |
8216 KB |
Output is correct |
30 |
Correct |
0 ms |
8216 KB |
Output is correct |
31 |
Correct |
0 ms |
8216 KB |
Output is correct |
32 |
Correct |
3 ms |
8216 KB |
Output is correct |
33 |
Correct |
0 ms |
8216 KB |
Output is correct |
34 |
Correct |
3 ms |
8216 KB |
Output is correct |
35 |
Correct |
3 ms |
8216 KB |
Output is correct |
36 |
Correct |
3 ms |
8216 KB |
Output is correct |
37 |
Correct |
0 ms |
8216 KB |
Output is correct |
38 |
Correct |
3 ms |
8216 KB |
Output is correct |
39 |
Correct |
3 ms |
8216 KB |
Output is correct |
40 |
Correct |
0 ms |
8216 KB |
Output is correct |
41 |
Correct |
0 ms |
8216 KB |
Output is correct |
42 |
Correct |
3 ms |
8216 KB |
Output is correct |
43 |
Correct |
0 ms |
8348 KB |
Output is correct |
44 |
Correct |
29 ms |
9536 KB |
Output is correct |
45 |
Correct |
39 ms |
8216 KB |
Output is correct |
46 |
Correct |
23 ms |
8216 KB |
Output is correct |
47 |
Correct |
9 ms |
8216 KB |
Output is correct |
48 |
Correct |
9 ms |
8876 KB |
Output is correct |
49 |
Correct |
73 ms |
8348 KB |
Output is correct |
50 |
Correct |
29 ms |
8348 KB |
Output is correct |
51 |
Correct |
49 ms |
8216 KB |
Output is correct |
52 |
Correct |
126 ms |
11384 KB |
Output is correct |
53 |
Correct |
76 ms |
8348 KB |
Output is correct |
54 |
Correct |
76 ms |
8216 KB |
Output is correct |
55 |
Correct |
29 ms |
9536 KB |
Output is correct |
56 |
Correct |
53 ms |
8216 KB |
Output is correct |
57 |
Correct |
86 ms |
8216 KB |
Output is correct |
58 |
Correct |
89 ms |
11384 KB |
Output is correct |
59 |
Correct |
93 ms |
11384 KB |
Output is correct |
60 |
Correct |
29 ms |
8216 KB |
Output is correct |
61 |
Correct |
9 ms |
8216 KB |
Output is correct |
62 |
Correct |
16 ms |
8216 KB |
Output is correct |
63 |
Correct |
26 ms |
8216 KB |
Output is correct |
64 |
Correct |
16 ms |
8216 KB |
Output is correct |
65 |
Correct |
33 ms |
8216 KB |
Output is correct |
66 |
Correct |
46 ms |
8216 KB |
Output is correct |