Submission #594554

# Submission time Handle Problem Language Result Execution time Memory
594554 2022-07-12T16:42:45 Z piOOE Sandcastle 2 (JOI22_ho_t5) C++17
100 / 100
2589 ms 5036 KB
#include <bits/stdc++.h>

using namespace std;

using ll = long long;

//O((H * W)^2)
//I also came up with O((H * W)^2) solution, but didn't know how to optimize it to O(min(H, W) * H * W)
//so now this is Radewoosh's solution

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n, m;
    cin >> n >> m;

    bool swapped = false;
    if (n > m) {
        swapped = true;
        swap(n, m);
    }

    vector<vector<int>> a(n, vector<int>(m));
    vector<int> yy;
    for (int i = 0; i < (swapped ? m : n); ++i) {
        for (int j = 0; j < (swapped ? n : m); ++j) {
            if (!swapped) {
                cin >> a[i][j];
                yy.push_back(a[i][j]);
            } else {
                cin >> a[j][i];
                yy.push_back(a[j][i]);
            }
        }
    }

    sort(yy.begin(), yy.end());
    yy.resize(unique(yy.begin(), yy.end()) - yy.begin());

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            a[i][j] = lower_bound(yy.begin(), yy.end(), a[i][j]) - yy.begin() + 1;
        }
    }

    const int dx[4] = {-1, 0, 1, 0};
    const int dy[4] = {0, 1, 0, -1};
    //  0
    // 2 1
    //  3

    auto solveM = [&](int k) {
        ll ans = 0;
        for (int i = 0; i < m;) {
            int j = i + 1;
            while (j < m && a[k][j] < a[k][j - 1]) {
                j += 1;
            }
            int len = j - i;
            ans += len * ((ll)len - 1) / 2;
            i = j;
        }

        for (int i = m - 1; i > -1;) {
            int j = i - 1;
            while (j > -1 && a[k][j] < a[k][j + 1]) {
                j -= 1;
            }
            int len = i - j;
            ans += len * ((ll)len - 1) / 2;
            i = j;
        }

        return ans;
    };

    auto solveN = [&](int k) {
        ll ans = 0;
        for (int i = 0; i < n;) {
            int j = i + 1;
            while (j < n && a[j][k] < a[j - 1][k]) {
                j += 1;
            }
            int len = j - i;
            ans += len * ((ll)len - 1) / 2;
            i = j;
        }

        for (int i = n - 1; i > -1;) {
            int j = i - 1;
            while (j > -1 && a[j][k] < a[j + 1][k]) {
                j -= 1;
            }
            int len = i - j;
            ans += len * ((ll)len - 1) / 2;
            i = j;
        }

        return ans;
    };

    ll ans = 0;
    if (n == 1) {
        ans += solveM(0) + m;
    } else {
        int diff[16][n][m];
        memset(diff, 0, sizeof(diff));

        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                for (int mask = 0; mask < 16; ++mask) {
                    int lower = 0;
                    bool big = false;
                    for (int k = 0; k < 4; ++k) {
                        if (mask >> k & 1) {
                            int nx = i + dx[k];
                            int ny = j + dy[k];
                            if (nx >= 0 && nx < n && ny >= 0 && ny < m) {
                                if (a[nx][ny] < a[i][j]) {
                                    lower = max(lower, a[nx][ny]);
                                } else {
                                    big = true;
                                }
                            }
                        }
                    }
                    diff[mask][i][j] = a[i][j] - lower + (big ? 0 : n * m + 1 - a[i][j]);
                }
            }
        }

        //now handle rectangles with width or length = 1
        for (int i = 0; i < n; ++i) {
            ans += solveM(i);
        }
        for (int i = 0; i < m; ++i) {
            ans += solveN(i);
        }
        ans += n * m;

        //main part!
        for (int x1 = 0; x1 < n; ++x1) {
            for (int x2 = x1 + 1; x2 < n; ++x2) {
                vector<ll> valMid(m), valR(m), valL(m);
                for (int y = 0; y < m; ++y) {
                    for (int x = x1; x <= x2; ++x) {
                        valMid[y] += diff[15 - (x == x1 ? 1 : 0) - (x == x2 ? 4 : 0)][x][y];
                        valL[y] += diff[15 - 8 - (x == x1 ? 1 : 0) - (x == x2 ? 4 : 0)][x][y];
                        valR[y] += diff[15 - 2 - (x == x1 ? 1 : 0) - (x == x2 ? 4 : 0)][x][y];
                    }
                }
                for (int y1 = 0; y1 < m; ++y1) {
                    ll sum = valL[y1];
                    for (int y2 = y1 + 1; y2 < m; ++y2) {
                        if (y2 - 1 > y1) {
                            sum += valMid[y2 - 1];
                        }
                        ans += (sum + valR[y2] == n * m + 1);
                    }
                }
            }
        }
    }
    cout << ans;
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 7 ms 912 KB Output is correct
3 Correct 13 ms 916 KB Output is correct
4 Correct 9 ms 912 KB Output is correct
5 Correct 10 ms 904 KB Output is correct
6 Correct 14 ms 912 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 3 ms 340 KB Output is correct
10 Correct 3 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 5 ms 340 KB Output is correct
14 Correct 2 ms 340 KB Output is correct
15 Correct 4 ms 340 KB Output is correct
16 Correct 3 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 3 ms 340 KB Output is correct
10 Correct 3 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 5 ms 340 KB Output is correct
14 Correct 2 ms 340 KB Output is correct
15 Correct 4 ms 340 KB Output is correct
16 Correct 3 ms 340 KB Output is correct
17 Correct 2 ms 340 KB Output is correct
18 Correct 32 ms 724 KB Output is correct
19 Correct 18 ms 852 KB Output is correct
20 Correct 48 ms 852 KB Output is correct
21 Correct 50 ms 880 KB Output is correct
22 Correct 49 ms 876 KB Output is correct
23 Correct 47 ms 860 KB Output is correct
24 Correct 33 ms 724 KB Output is correct
25 Correct 44 ms 880 KB Output is correct
26 Correct 46 ms 796 KB Output is correct
27 Correct 46 ms 964 KB Output is correct
28 Correct 47 ms 880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 3 ms 340 KB Output is correct
10 Correct 3 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 5 ms 340 KB Output is correct
14 Correct 2 ms 340 KB Output is correct
15 Correct 4 ms 340 KB Output is correct
16 Correct 3 ms 340 KB Output is correct
17 Correct 2 ms 340 KB Output is correct
18 Correct 32 ms 724 KB Output is correct
19 Correct 18 ms 852 KB Output is correct
20 Correct 48 ms 852 KB Output is correct
21 Correct 50 ms 880 KB Output is correct
22 Correct 49 ms 876 KB Output is correct
23 Correct 47 ms 860 KB Output is correct
24 Correct 33 ms 724 KB Output is correct
25 Correct 44 ms 880 KB Output is correct
26 Correct 46 ms 796 KB Output is correct
27 Correct 46 ms 964 KB Output is correct
28 Correct 47 ms 880 KB Output is correct
29 Correct 8 ms 1296 KB Output is correct
30 Correct 800 ms 4320 KB Output is correct
31 Correct 2119 ms 4312 KB Output is correct
32 Correct 337 ms 5036 KB Output is correct
33 Correct 2432 ms 4316 KB Output is correct
34 Correct 2589 ms 4304 KB Output is correct
35 Correct 712 ms 2968 KB Output is correct
36 Correct 1216 ms 4176 KB Output is correct
37 Correct 2377 ms 4176 KB Output is correct
38 Correct 2230 ms 4176 KB Output is correct
39 Correct 2286 ms 4176 KB Output is correct
40 Correct 2280 ms 4176 KB Output is correct
41 Correct 2244 ms 4200 KB Output is correct
42 Correct 2260 ms 4340 KB Output is correct
43 Correct 2300 ms 4164 KB Output is correct
44 Correct 2347 ms 4280 KB Output is correct