Submission #591723

# Submission time Handle Problem Language Result Execution time Memory
591723 2022-07-07T19:27:50 Z piOOE Boat (APIO16_boat) C++17
100 / 100
526 ms 4384 KB
    //#define _GLIBCXX_DEBUG
     
    //#pragma GCC optimize("Ofast")
    //#pragma GCC optimize("unroll-loops")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
     
    #include <bits/stdc++.h>
     
    using namespace std;
     
    #include <ext/pb_ds/assoc_container.hpp>
     
    using namespace __gnu_pbds;
     
    template<typename T>
    using ordered_set = tree<T, null_type, less < T>, rb_tree_tag, tree_order_statistics_node_update>;
     
    template<typename T>
    using normal_queue = priority_queue <T, vector<T>, greater<>>;
     
    mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
     
    #define ll long long
    #define trace(x) cout << #x << ": " << (x) << endl;
    #define all(x) begin(x), end(x)
    #define rall(x) rbegin(x), rend(x)
    #define uniq(x) x.resize(unique(all(x)) - begin(x))
    #define ld long double
    #define sz(s) ((int) size(s))
    #define pii pair<int, int>
    #define mp(x, y) make_pair(x, y)
    #define int128 __int128
    #define pb push_back
    #define eb emplace_back
     
     
    template<typename T>
    bool ckmin(T &x, T y) {
        if (x > y) {
            x = y;
            return true;
        }
        return false;
    }
     
    template<typename T>
    bool ckmax(T &x, T y) {
        if (x < y) {
            x = y;
            return true;
        }
        return false;
    }
     
    int bit(int x, int b) {
        return (x >> b) & 1;
    }
     
    int rand(int l, int r) { return (int) ((ll) rnd() % (r - l + 1)) + l; }
     
    //soryan za musor sverhu
     
    const ll infL = 3e18;
    const int infI = 1'000'000'000 + 7;
    const int N = 1001;
    const ll mod = 1e9 + 7;
    const ld eps = 1e-9;
     
    ll fastp(ll a, ll p) {
        ll ans = 1;
        a %= mod;
        while (p) {
            if (p & 1)
                ans = ans * a % mod;
            a = a * a % mod;
            p >>= 1;
        }
        return ans;
    }
     
    ll fac[N];
    ll invfac[N];
    ll invnum[N];
     
    void init() {
        int n = N - 1;
        fac[0] = invnum[0] = invfac[0] = 1;
        for (int i = 1; i <= n; ++i) {
            fac[i] = fac[i - 1] * i % mod;
        }
        invfac[n] = fastp(fac[n], mod - 2);
        invnum[n] = invfac[n] * fac[n - 1] % mod;
        for (int i = n - 1; i > 0; --i) {
            invfac[i] = invfac[i + 1] * (i + 1) % mod;
            invnum[i] = invfac[i] * fac[i - 1] % mod;
        }
    }
     
    ll inv(ll a) {
        if (a < N) return invnum[a];
        return fastp(a, mod - 2);
    }
     
    ll cnk(int n, int k) {
        if (k < 0 || k > n) return 0;
        return fac[n] * invfac[n - k] % mod * invfac[k] % mod;
    }
     
    ll dp[N][N];
    int A[N], B[N], cord[N];
     
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        init();
        int n;
        cin >> n;
        for (int i = 1; i <= n; ++i) {
            cin >> A[i] >> B[i];
            ++B[i];
            cord[(i - 1) * 2] = A[i];
            cord[(i - 1) * 2 + 1] = B[i];
        }
        sort(cord, cord + n * 2);
        int m = unique(cord, cord + 2 * n) - cord;
        for (int i = 1; i <= n; ++i) {
            A[i] = lower_bound(cord, cord + m, A[i]) - cord + 1;
            B[i] = lower_bound(cord, cord + m, B[i]) - cord + 1;
        }
        for (int i = 0; i < m; ++i) dp[0][i] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = A[i]; j < B[i]; ++j) {
                ll len = cord[j] - cord[j - 1];
                ll x = len;
                int cnt = 1;
                //this number is C(len + cnt - 1, cnt - 1)
                //so when we increase cnt, x = x * (len + cnt - 1) / cnt
                //because the last one is 100% not zero
                for (int k = i - 1; k >= 0; --k) {
                    dp[i][j] = (dp[i][j] + x * dp[k][j - 1]) % mod;
                    if (A[k] <= j && j < B[k]) {
                        ++cnt;
                        x = x * (len + cnt - 1) % mod * inv(cnt) % mod;
                    }
                }
            }
            for (int j = 1; j < N; ++j) {
                dp[i][j] = (dp[i][j] + dp[i][j - 1]) % mod;
            }
        }
        ll ans = 0;
        for (int i = 1; i <= n; ++i) {
            ans = (ans + dp[i][N - 1]) % mod;
        }
        cout << ans;
        return 0;
     
    }
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4180 KB Output is correct
2 Correct 7 ms 4180 KB Output is correct
3 Correct 6 ms 4180 KB Output is correct
4 Correct 7 ms 4252 KB Output is correct
5 Correct 7 ms 4204 KB Output is correct
6 Correct 7 ms 4308 KB Output is correct
7 Correct 6 ms 4180 KB Output is correct
8 Correct 7 ms 4200 KB Output is correct
9 Correct 7 ms 4204 KB Output is correct
10 Correct 7 ms 4308 KB Output is correct
11 Correct 6 ms 4204 KB Output is correct
12 Correct 6 ms 4180 KB Output is correct
13 Correct 6 ms 4308 KB Output is correct
14 Correct 6 ms 4200 KB Output is correct
15 Correct 7 ms 4264 KB Output is correct
16 Correct 6 ms 4240 KB Output is correct
17 Correct 6 ms 4180 KB Output is correct
18 Correct 7 ms 4232 KB Output is correct
19 Correct 7 ms 4180 KB Output is correct
20 Correct 6 ms 4180 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4180 KB Output is correct
2 Correct 7 ms 4180 KB Output is correct
3 Correct 6 ms 4180 KB Output is correct
4 Correct 7 ms 4252 KB Output is correct
5 Correct 7 ms 4204 KB Output is correct
6 Correct 7 ms 4308 KB Output is correct
7 Correct 6 ms 4180 KB Output is correct
8 Correct 7 ms 4200 KB Output is correct
9 Correct 7 ms 4204 KB Output is correct
10 Correct 7 ms 4308 KB Output is correct
11 Correct 6 ms 4204 KB Output is correct
12 Correct 6 ms 4180 KB Output is correct
13 Correct 6 ms 4308 KB Output is correct
14 Correct 6 ms 4200 KB Output is correct
15 Correct 7 ms 4264 KB Output is correct
16 Correct 6 ms 4240 KB Output is correct
17 Correct 6 ms 4180 KB Output is correct
18 Correct 7 ms 4232 KB Output is correct
19 Correct 7 ms 4180 KB Output is correct
20 Correct 6 ms 4180 KB Output is correct
21 Correct 228 ms 4184 KB Output is correct
22 Correct 224 ms 4164 KB Output is correct
23 Correct 211 ms 4172 KB Output is correct
24 Correct 218 ms 4160 KB Output is correct
25 Correct 230 ms 4220 KB Output is correct
26 Correct 451 ms 4252 KB Output is correct
27 Correct 467 ms 4300 KB Output is correct
28 Correct 462 ms 4204 KB Output is correct
29 Correct 441 ms 4172 KB Output is correct
30 Correct 7 ms 4180 KB Output is correct
31 Correct 7 ms 4180 KB Output is correct
32 Correct 7 ms 4180 KB Output is correct
33 Correct 7 ms 4220 KB Output is correct
34 Correct 7 ms 4204 KB Output is correct
35 Correct 7 ms 4180 KB Output is correct
36 Correct 9 ms 4204 KB Output is correct
37 Correct 9 ms 4180 KB Output is correct
38 Correct 8 ms 4208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 1108 KB Output is correct
2 Correct 3 ms 1108 KB Output is correct
3 Correct 3 ms 1108 KB Output is correct
4 Correct 3 ms 1108 KB Output is correct
5 Correct 3 ms 1108 KB Output is correct
6 Correct 5 ms 1108 KB Output is correct
7 Correct 5 ms 1124 KB Output is correct
8 Correct 5 ms 1040 KB Output is correct
9 Correct 5 ms 1056 KB Output is correct
10 Correct 6 ms 1096 KB Output is correct
11 Correct 3 ms 1108 KB Output is correct
12 Correct 3 ms 1088 KB Output is correct
13 Correct 4 ms 1124 KB Output is correct
14 Correct 3 ms 1108 KB Output is correct
15 Correct 4 ms 1108 KB Output is correct
16 Correct 3 ms 1128 KB Output is correct
17 Correct 4 ms 1120 KB Output is correct
18 Correct 3 ms 1108 KB Output is correct
19 Correct 3 ms 1108 KB Output is correct
20 Correct 3 ms 1108 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4180 KB Output is correct
2 Correct 7 ms 4180 KB Output is correct
3 Correct 6 ms 4180 KB Output is correct
4 Correct 7 ms 4252 KB Output is correct
5 Correct 7 ms 4204 KB Output is correct
6 Correct 7 ms 4308 KB Output is correct
7 Correct 6 ms 4180 KB Output is correct
8 Correct 7 ms 4200 KB Output is correct
9 Correct 7 ms 4204 KB Output is correct
10 Correct 7 ms 4308 KB Output is correct
11 Correct 6 ms 4204 KB Output is correct
12 Correct 6 ms 4180 KB Output is correct
13 Correct 6 ms 4308 KB Output is correct
14 Correct 6 ms 4200 KB Output is correct
15 Correct 7 ms 4264 KB Output is correct
16 Correct 6 ms 4240 KB Output is correct
17 Correct 6 ms 4180 KB Output is correct
18 Correct 7 ms 4232 KB Output is correct
19 Correct 7 ms 4180 KB Output is correct
20 Correct 6 ms 4180 KB Output is correct
21 Correct 228 ms 4184 KB Output is correct
22 Correct 224 ms 4164 KB Output is correct
23 Correct 211 ms 4172 KB Output is correct
24 Correct 218 ms 4160 KB Output is correct
25 Correct 230 ms 4220 KB Output is correct
26 Correct 451 ms 4252 KB Output is correct
27 Correct 467 ms 4300 KB Output is correct
28 Correct 462 ms 4204 KB Output is correct
29 Correct 441 ms 4172 KB Output is correct
30 Correct 7 ms 4180 KB Output is correct
31 Correct 7 ms 4180 KB Output is correct
32 Correct 7 ms 4180 KB Output is correct
33 Correct 7 ms 4220 KB Output is correct
34 Correct 7 ms 4204 KB Output is correct
35 Correct 7 ms 4180 KB Output is correct
36 Correct 9 ms 4204 KB Output is correct
37 Correct 9 ms 4180 KB Output is correct
38 Correct 8 ms 4208 KB Output is correct
39 Correct 3 ms 1108 KB Output is correct
40 Correct 3 ms 1108 KB Output is correct
41 Correct 3 ms 1108 KB Output is correct
42 Correct 3 ms 1108 KB Output is correct
43 Correct 3 ms 1108 KB Output is correct
44 Correct 5 ms 1108 KB Output is correct
45 Correct 5 ms 1124 KB Output is correct
46 Correct 5 ms 1040 KB Output is correct
47 Correct 5 ms 1056 KB Output is correct
48 Correct 6 ms 1096 KB Output is correct
49 Correct 3 ms 1108 KB Output is correct
50 Correct 3 ms 1088 KB Output is correct
51 Correct 4 ms 1124 KB Output is correct
52 Correct 3 ms 1108 KB Output is correct
53 Correct 4 ms 1108 KB Output is correct
54 Correct 3 ms 1128 KB Output is correct
55 Correct 4 ms 1120 KB Output is correct
56 Correct 3 ms 1108 KB Output is correct
57 Correct 3 ms 1108 KB Output is correct
58 Correct 3 ms 1108 KB Output is correct
59 Correct 241 ms 4240 KB Output is correct
60 Correct 241 ms 4268 KB Output is correct
61 Correct 219 ms 4252 KB Output is correct
62 Correct 240 ms 4216 KB Output is correct
63 Correct 256 ms 4236 KB Output is correct
64 Correct 504 ms 4240 KB Output is correct
65 Correct 526 ms 4204 KB Output is correct
66 Correct 525 ms 4308 KB Output is correct
67 Correct 515 ms 4200 KB Output is correct
68 Correct 520 ms 4200 KB Output is correct
69 Correct 228 ms 4236 KB Output is correct
70 Correct 207 ms 4384 KB Output is correct
71 Correct 215 ms 4156 KB Output is correct
72 Correct 211 ms 4188 KB Output is correct
73 Correct 215 ms 4188 KB Output is correct
74 Correct 55 ms 4236 KB Output is correct
75 Correct 52 ms 4168 KB Output is correct
76 Correct 55 ms 4180 KB Output is correct
77 Correct 56 ms 4176 KB Output is correct
78 Correct 55 ms 4232 KB Output is correct