#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
namespace NT {
vpi fac(int x) {
vpi pri;
for (int i = 2; i*i <= x; ++i) if (x % i == 0) {
int t = 0;
while (x % i == 0) x /= i, t ++;
pri.pb({i,t});
}
if (x > 1) pri.pb({x,1});
return pri;
}
int phi(int x) {
for (auto a: fac(x)) x /= a.f, x *= a.f-1;
return x;
}
ll inv(ll a, ll b) { // 0 < a < b, gcd(a,b) = 1
a %= b;
if (a <= 1) return a;
ll i = inv(b%a,a);
ll tmp = -((b/a)*i+((b%a)*i)/a) % b;
if (tmp < 0) tmp += b;
return tmp;
}
pl CRT(pl a, pl b) { // Chinese Remainder Theorem, Verified by Kattis generalchineseremainder
ll g = __gcd(a.s,b.s), l = a.s*b.s/g;
if ((b.f-a.f) % g != 0) return {-1,-1};
ll A = a.s/g, B = b.s/g;
ll mul = (b.f-a.f)/g*inv(A%B,B) % B;
return {((mul*a.s+a.f)%l+l)%l,l};
}
};
template<int SZ> struct ComboPower {
pl fac[SZ+1], ifac[SZ+1], mod;
ll MOD = 1;
void init(pl _mod) { // prime, power
mod = _mod; F0R(i,mod.s) MOD *= mod.f;
fac[0] = ifac[0] = {1,0};
FOR(i,1,SZ+1) {
fac[i] = fac[i-1];
int I = i, z = 0;
while (I % mod.f == 0) I /= mod.f, z++;
fac[i].f = fac[i].f*I%MOD; fac[i].s += z;
ifac[i] = {NT::inv(fac[i].f,MOD),fac[i].s};
}
}
ll comb(ll a, ll b) {
if (a < b || b < 0) return 0;
ll tmp = (fac[a].f*ifac[b].f%MOD)*ifac[a-b].f % MOD;
ll z = fac[a].s-fac[b].s-fac[a-b].s;
if (z >= mod.s) return 0;
F0R(i,z) tmp = tmp*mod.f % MOD;
return tmp;
}
};
template<int SZ> struct ComboGeneral {
vector<ComboPower<SZ>> v;
ll MOD;
void init(ll _MOD) {
MOD = _MOD;
for (auto a: NT::fac(MOD)) {
v.pb(ComboPower<SZ>());
v.back().init(a);
}
}
ll comb(ll a, ll b) {
pl cur = {0,1};
for (auto& x: v) cur = NT::CRT({x.comb(a,b),x.MOD},cur);
return cur.f;
}
};
ComboGeneral<600001> C;
int get(pi a, pi b) {
return C.comb(b.f-a.f+b.s-a.s,b.s-a.s);
}
int N,M,K,T,Z, ways[22][22], dp[22][22];
vpi p;
ll ad(ll a, ll b) { return (a+b)%Z; }
ll sub(ll a, ll b) { return (a-b+Z)%Z; }
ll mul(ll a, ll b) { return a*b%Z; }
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N >> M >> K >> T >> Z;
C.init(Z);
F0R(i,K) {
int X,Y; cin >> X >> Y;
p.pb({X,Y});
}
p.pb({0,0});
sort(all(p));
p.pb({N,M});
F0R(i,sz(p)) F0Rd(j,i) {
ways[j][i] = get(p[j],p[i]);
FOR(k,j+1,i) ways[j][i] = sub(ways[j][i],mul(ways[j][k],get(p[k],p[i])));
// cout << j << " " << i << " " << ways[j][i] << "\n";
}
dp[0][0] = 1;
FOR(i,1,sz(p)) F0R(j,i) FOR(k,1,T+2)
dp[i][k] = ad(dp[i][k],mul(dp[j][k-1],ways[j][i]));
int ans = 0;
FOR(i,1,T+2) ans = ad(ans,dp[sz(p)-1][i]);
cout << ans;
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
274 ms |
75640 KB |
Output is correct |
2 |
Correct |
917 ms |
75468 KB |
Output is correct |
3 |
Correct |
414 ms |
37880 KB |
Output is correct |
4 |
Correct |
536 ms |
37880 KB |
Output is correct |
5 |
Correct |
418 ms |
37880 KB |
Output is correct |
6 |
Correct |
529 ms |
37880 KB |
Output is correct |
7 |
Correct |
529 ms |
37892 KB |
Output is correct |
8 |
Correct |
531 ms |
37852 KB |
Output is correct |
9 |
Correct |
529 ms |
37880 KB |
Output is correct |
10 |
Correct |
558 ms |
37880 KB |
Output is correct |
11 |
Correct |
512 ms |
37884 KB |
Output is correct |
12 |
Correct |
533 ms |
37880 KB |
Output is correct |
13 |
Correct |
922 ms |
75460 KB |
Output is correct |
14 |
Correct |
920 ms |
75472 KB |
Output is correct |
15 |
Correct |
936 ms |
75512 KB |
Output is correct |
16 |
Correct |
938 ms |
75476 KB |
Output is correct |
17 |
Correct |
941 ms |
75512 KB |
Output is correct |
18 |
Correct |
970 ms |
75512 KB |
Output is correct |
19 |
Correct |
920 ms |
75512 KB |
Output is correct |
20 |
Correct |
943 ms |
75512 KB |
Output is correct |