#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 4e18;
const int MX = 100001;
int N;
ll dp[5001];
vpi v, V;
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N;
F0R(i,N) {
int a,b; cin >> a >> b;
v.pb({abs(a),-abs(b)});
}
sort(all(v));
for (auto a: v) {
a.s *= -1;
while (sz(V) && V.back().s <= a.s) V.pop_back();
V.pb(a);
}
F0R(i,sz(V)) {
dp[i+1] = INF;
F0Rd(j,i+1) {
dp[i+1] = min(dp[i+1],dp[j]+(ll)V[j].s*V[i].f);
}
}
cout << 4*dp[sz(V)];
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
376 KB |
Output is correct |
2 |
Correct |
2 ms |
448 KB |
Output is correct |
3 |
Correct |
3 ms |
488 KB |
Output is correct |
4 |
Correct |
3 ms |
620 KB |
Output is correct |
5 |
Correct |
2 ms |
620 KB |
Output is correct |
6 |
Correct |
2 ms |
744 KB |
Output is correct |
7 |
Correct |
3 ms |
744 KB |
Output is correct |
8 |
Correct |
4 ms |
792 KB |
Output is correct |
9 |
Correct |
6 ms |
952 KB |
Output is correct |
10 |
Correct |
8 ms |
1012 KB |
Output is correct |