Submission #579063

# Submission time Handle Problem Language Result Execution time Memory
579063 2022-06-18T11:05:54 Z KoD Distributing Candies (IOI21_candies) C++17
38 / 100
5000 ms 26384 KB
#include "candies.h"
#include <bits/stdc++.h>

using std::array;
using std::pair;
using std::tuple;
using std::vector;

using ll = long long;

template <class T>
constexpr T infty = std::numeric_limits<T>::max() / 2;

template <class F>
struct fixed : private F {
    explicit fixed(F&& f) : F(std::forward<F>(f)) {}
    template <class... Args>
    decltype(auto) operator()(Args&&... args) const {
        return F::operator()(*this, std::forward<Args>(args)...);
    }
};

template <class T> class fenwick_tree {
    vector<T> data;

  public:
    explicit fenwick_tree(const int n) : data(n + 1) {}

    void add(int i, const T& x) {
        i += 1;
        while (i < (int)data.size()) {
            data[i] += x;
            i += i & -i;
        }
    }

    T pref(int i) const {
        T ret = 0;
        while (i > 0) {
            ret += data[i];
            i -= i & -i;
        }
        return ret;
    }

    T fold(const int l, const int r) const {
        return pref(r) - pref(l);
    }
};

struct func {
    ll lb, ub, add;
    ll eval(const ll x) {
        return std::clamp(x, lb, ub) + add;
    }
};

constexpr func unit = {-infty<ll>, infty<ll>, 0};

func composition(const func& f, const func& g) {
    auto [l1, r1, a1] = f;
    auto [l2, r2, a2] = g;
    l2 -= a1;
    r2 -= a1;
    a2 += a1;
    if (r1 <= l2) return {l2, l2, a2};
    if (r2 <= l1) return {r2, r2, a2};
    return {std::max(l1, l2), std::min(r1, r2), a2}; 
}

class segtree {
    int size, logn;
    vector<func> data;

    void apply(const int k, const func& f) {
        data[k] = composition(data[k], f);
    }

    void flush(const int k) {
        apply(2 * k, data[k]);
        apply(2 * k + 1, data[k]);
        data[k] = unit;
    }

    void push(int k) {
        const int z = __builtin_ctz(k);
        for (int d = logn; d > z; --d) {
            flush(k >> d);
        }
    }

  public:
    explicit segtree(const int n) {
        logn = 0;
        while ((1 << logn) < n) logn += 1;
        size = 1 << logn;
        data.resize(2 * size, unit);
    }

    void apply(int l, int r, const func& f) {
        l += size;
        r += size;
        push(l);
        push(r);
        while (l < r) {
            if (l & 1) apply(l++, f);
            if (r & 1) apply(--r, f);
            l >>= 1;
            r >>= 1;
        }
    }

    func get(int k) {
        k += size;
        for (int d = logn; d > 0; --d) {
            flush(k >> d);
        }
        return data[k];
    }
};

vector<int> distribute_candies(vector<int> C, vector<int> L, vector<int> R, vector<int> V) {
    const int N = (int)C.size();   
    const int Q = (int)L.size();
    for (auto& x : R) x += 1;

    if (N <= 2000 and Q <= 2000) {
        vector<int> X(N);
        for (int q = 0; q < Q; ++q) {
            for (int i = L[q]; i < R[q]; ++i) {
                X[i] = std::clamp(X[i] + V[q], 0, C[i]);
            }
        }
        return X;
    }

    if (*std::min_element(V.begin(), V.end()) > 0) {
        fenwick_tree<ll> fen(N);
        for (int q = 0; q < Q; ++q) {
            fen.add(L[q], V[q]);
            fen.add(R[q], -V[q]);
        }
        vector<int> X(N);
        for (int i = 0; i < N; ++i) {
            const ll tmp = fen.pref(i + 1);
            X[i] = tmp >= C[i] ? C[i] : tmp;
        }
        return X;
    }

    if (std::count(C.begin(), C.end(), C[0]) == N) {
        segtree seg(N);
        for (int q = 0; q < Q; ++q) {
            seg.apply(L[q], R[q], composition({-infty<int>, infty<int>, V[q]}, {0, C[0], 0}));
        }
        vector<int> X(N);
        for (int i = 0; i < N; ++i) {
            X[i] = seg.get(i).eval(0);
        }
        return X;
    }

    vector<pair<int, int>> sorted(N);
    for (int i = 0; i < N; ++i) {
        sorted[i] = {C[i], i};
    }
    std::sort(sorted.begin(), sorted.end());
    vector<ll> sum(Q + 1);
    std::map<int, pair<int, int>> last;
    const auto calc = [&](const int i, const int t) {
        const auto [s, x] = last.upper_bound(i)->second;
        return (x == 0 ? 0 : sorted[i].first) + (sum[t] - sum[s]);
    };
    last[0] = {N, 0};
    for (int q = 0; q < Q; ++q) {
        sum[q + 1] = sum[q] + V[q];
        int ng = -1, ok = N;
        while (std::abs(ng - ok) > 1) {
            const int md = (ok + ng) / 2;
            const int val = calc(md, q + 1);
            if (val < 0 or sorted[md].first < val) {
                ng = md;
            } else {
                ok = md;
            }
        }
        while (last.begin() -> first < ok) {
            last.erase(last.begin());
        }
        last[ok] = {q + 1, V[q] > 0};
    }
    vector<int> X(N);
    for (int i = 0; i < N; ++i) {
        X[sorted[i].second] = calc(i, Q);
    }
    return X;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 5 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 118 ms 8816 KB Output is correct
2 Correct 122 ms 8808 KB Output is correct
3 Correct 112 ms 8884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 166 ms 5112 KB Output is correct
3 Correct 133 ms 17200 KB Output is correct
4 Correct 462 ms 25680 KB Output is correct
5 Correct 447 ms 26108 KB Output is correct
6 Correct 417 ms 26384 KB Output is correct
7 Correct 461 ms 25700 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Execution timed out 5023 ms 6488 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 5 ms 340 KB Output is correct
6 Correct 118 ms 8816 KB Output is correct
7 Correct 122 ms 8808 KB Output is correct
8 Correct 112 ms 8884 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 166 ms 5112 KB Output is correct
11 Correct 133 ms 17200 KB Output is correct
12 Correct 462 ms 25680 KB Output is correct
13 Correct 447 ms 26108 KB Output is correct
14 Correct 417 ms 26384 KB Output is correct
15 Correct 461 ms 25700 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Execution timed out 5023 ms 6488 KB Time limit exceeded
19 Halted 0 ms 0 KB -