답안 #578803

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
578803 2022-06-18T04:23:47 Z talant117408 Dynamic Diameter (CEOI19_diameter) C++17
49 / 100
2950 ms 30896 KB
#include <bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;

#define long                unsigned long 
#define pb                  push_back
#define mp                  make_pair
#define all(v)              (v).begin(),(v).end()
#define rall(v)             (v).rbegin(),(v).rend()
#define lb                  lower_bound
#define ub                  upper_bound
#define sz(v)               int((v).size())
#define do_not_disturb      ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl                '\n'

const int N = 1e5+7;
set <pair <int, ll>> graph[N];
vector <pair <pii, ll>> edges;
ll df, vf;
int n, q;
ll w;

void find_furthest(int v, int p, ll dist = 0) {
    if (dist > df) {
        df = dist;
        vf = v;
    }
    for (auto to : graph[v]) {
        if (to.first == p) continue;
        find_furthest(to.first, v, dist+to.second);
    }
}

void subtask3() {
    for (auto to : edges) {
        if (to.first.first != 1) {
            return;
        }
    }
    set <pair <ll, int>, greater <pair <ll, int>>> st;
    for (auto to : edges) {
        st.insert(mp(to.second, to.first.second));
    }
    ll last = 0;
    while (q--) {
        ll d, e;
        cin >> d >> e;
        d = (d + last) % (n - 1);
        e = (e + last) % w;
        auto &c = edges[d].second;
        auto b = edges[d].first.second;
        st.erase(st.find(mp(c, b)));
        c = e;
        st.insert(mp(c, b));
        ll ans = 0;
        ll cnt = 0;
        for (auto to : st) {
            ans += to.first;
            if (++cnt > 1) break;
        }
        cout << ans << endl;
        last = ans;
    }
    exit(0);
}

void subtask4() {
    vector <ll> ans_for(n+1);
    vector <pll> mx_child(n+1), dist_child(n+1);
    set <pair <ll, int>, greater <pair <ll, int>>> st;
    for (auto to : edges) {
        auto a = to.first.first;
        auto b = to.first.second;
        if (!(a*2 != b || a*2+1 != b)) {
            return;
        }
        if (a*2 == b) dist_child[a].first = to.second;
        else dist_child[a].second = to.second;
    }
    
    for (int i = 1; i <= n; i++) {
        if (sz(graph[i]) == 1) {
            int x = i;
            while (x) {
                if (x*2 <= n) mx_child[x].first = max(mx_child[x*2].first, mx_child[x*2].second)+dist_child[x].first;
                if (x*2+1 <= n) mx_child[x].second = max(mx_child[x*2+1].first, mx_child[x*2+1].second)+dist_child[x].second;
                x >>= 1;
            }
        }
    }
    for (int i = 1; i <= n; i++) {
        st.insert(mp(mx_child[i].first+mx_child[i].second, i));
    }
    
    ll last = 0;
    while (q--) {
        ll d, e;
        cin >> d >> e;
        d = (d + last) % (n - 1);
        e = (e + last) % w;
        auto a = edges[d].first.first, b = edges[d].first.second;
        int x = (b >> 1);
        if (a*2 == b) dist_child[a].first = e;
        else dist_child[a].second = e;
        while (x) {
            st.erase(st.find(mp(mx_child[x].first+mx_child[x].second, x)));
            if (x*2 <= n) mx_child[x].first = max(mx_child[x*2].first, mx_child[x*2].second)+dist_child[x].first;
            if (x*2+1 <= n) mx_child[x].second = max(mx_child[x*2+1].first, mx_child[x*2+1].second)+dist_child[x].second;
            st.insert(mp(mx_child[x].first+mx_child[x].second, x));
            x >>= 1;
        }
        cout << (*st.begin()).first << endl;
        last = (*st.begin()).first;
    }
    exit(0);
}

ll tree[N*4], lz[N*4];
int depth[N], timer;
pii range[N];

void push(int v, int l, int r) {
    if (lz[v] != 0) {
        tree[v] += lz[v];
        if (l != r) {
            lz[v] += lz[v*2];
            lz[v] += lz[v*2+1];
        }
        lz[v] = 0;
    }
}

void update(int v, int l, int r, int ql, int qr, ll val) {
    push(v, l, r);
    if (ql > r || l > qr) return;
    if (ql <= l && r <= qr) {
        lz[v] += val;
        push(v, l, r);
        return;
    }
    int mid = (l+r) >> 1;
    update(v*2, l, mid, ql, qr, val);
    update(v*2+1, mid+1, r, ql, qr, val);
    tree[v] = max(tree[v*2], tree[v*2+1]);
}

ll get(int v, int l, int r, int ql, int qr) {
    push(v, l, r);
    if (ql > r || l > qr) return -9e18;
    if (ql <= l && r <= qr) return tree[v];
    int mid = (l+r) >> 1;
    return max(get(v*2, l, mid, ql, qr), get(v*2+1, mid+1, r, ql, qr));
}

void dfs(int v = 1, int p = 1, ll dist = 0) {
    range[v].first = ++timer;
    update(1, 1, n, timer, timer, dist);
    for (auto to : graph[v]) {
        if (to.first == p) continue;
        depth[to.first] = depth[v] + 1;
        dfs(to.first, v, dist+to.second);
    }
    range[v].second = timer;
}

void solve() {
    cin >> n >> q >> w;
    for (int i = 0; i < n-1; i++) {
        int a, b;
        ll c;
        cin >> a >> b >> c;
        if (a > b) swap(a, b);
        edges.pb(mp(mp(a, b), c));
        graph[a].insert(mp(b, c));
        graph[b].insert(mp(a, c));
    }
    
    
    if (n <= 5000) {
        ll last = 0;
        while (q--) {
            ll d, e;
            cin >> d >> e;
            d = (d + last) % (n - 1);
            e = (e + last) % w;
            auto a = edges[d].first.first, b = edges[d].first.second;
            auto &c = edges[d].second;
            graph[a].erase(graph[a].find(mp(b, c)));
            graph[b].erase(graph[b].find(mp(a, c)));
            c = e;
            graph[a].insert(mp(b, c));
            graph[b].insert(mp(a, c));
            df = vf = 0;
            find_furthest(1, 1);
            df = 0;
            find_furthest(vf, vf);
            cout << df << endl;
            last = df;
        }
        return;
    }
    subtask3();
    subtask4();
    
    dfs();
    ll last = 0;
    while (q--) {
        ll d, e;
        cin >> d >> e;
        d = (d + last) % (n - 1);
        e = (e + last) % w;
        auto a = edges[d].first.first, b = edges[d].first.second;
        auto &c = edges[d].second;
        if (depth[a] < depth[b]) swap(a, b);
        update(1, 1, n, range[b].first, range[b].second, e-c);
        c = e;
        auto res = get(1, 1, n, 1, n);
        cout << res << endl;
        last = res;
    }
}

int main() {
    do_not_disturb
    
    int t = 1;
    //~ cin >> t;
    while (t--) {
        solve();
    }
    
    return 0;
}
/*

*/
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 4 ms 4948 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 4948 KB Output is correct
9 Correct 3 ms 4948 KB Output is correct
10 Correct 5 ms 5008 KB Output is correct
11 Correct 2 ms 4948 KB Output is correct
12 Correct 2 ms 4948 KB Output is correct
13 Correct 3 ms 4948 KB Output is correct
14 Correct 4 ms 4948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 4948 KB Output is correct
17 Correct 3 ms 4948 KB Output is correct
18 Correct 4 ms 4948 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 4 ms 4948 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 4948 KB Output is correct
9 Correct 3 ms 4948 KB Output is correct
10 Correct 5 ms 5008 KB Output is correct
11 Correct 2 ms 4948 KB Output is correct
12 Correct 2 ms 4948 KB Output is correct
13 Correct 3 ms 4948 KB Output is correct
14 Correct 4 ms 4948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 4948 KB Output is correct
17 Correct 3 ms 4948 KB Output is correct
18 Correct 4 ms 4948 KB Output is correct
19 Correct 224 ms 5200 KB Output is correct
20 Correct 257 ms 5284 KB Output is correct
21 Correct 284 ms 5168 KB Output is correct
22 Correct 286 ms 5232 KB Output is correct
23 Correct 1761 ms 5852 KB Output is correct
24 Correct 1872 ms 5836 KB Output is correct
25 Correct 2017 ms 5804 KB Output is correct
26 Correct 2461 ms 6120 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 5 ms 4948 KB Output is correct
4 Correct 20 ms 5108 KB Output is correct
5 Correct 89 ms 5428 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 5076 KB Output is correct
8 Correct 6 ms 5076 KB Output is correct
9 Correct 40 ms 5076 KB Output is correct
10 Correct 312 ms 5228 KB Output is correct
11 Correct 1581 ms 5740 KB Output is correct
12 Correct 6 ms 5972 KB Output is correct
13 Correct 6 ms 6036 KB Output is correct
14 Correct 7 ms 5972 KB Output is correct
15 Correct 16 ms 6124 KB Output is correct
16 Correct 55 ms 6488 KB Output is correct
17 Correct 112 ms 25416 KB Output is correct
18 Correct 91 ms 25376 KB Output is correct
19 Correct 91 ms 25308 KB Output is correct
20 Correct 133 ms 25380 KB Output is correct
21 Correct 232 ms 25872 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 30 ms 5176 KB Output is correct
2 Correct 300 ms 5212 KB Output is correct
3 Correct 1485 ms 5520 KB Output is correct
4 Correct 2950 ms 5740 KB Output is correct
5 Correct 11 ms 7376 KB Output is correct
6 Correct 29 ms 7752 KB Output is correct
7 Correct 94 ms 7736 KB Output is correct
8 Correct 179 ms 7960 KB Output is correct
9 Correct 42 ms 17160 KB Output is correct
10 Correct 66 ms 17216 KB Output is correct
11 Correct 148 ms 17464 KB Output is correct
12 Correct 250 ms 17728 KB Output is correct
13 Correct 80 ms 29224 KB Output is correct
14 Correct 99 ms 29336 KB Output is correct
15 Correct 204 ms 29496 KB Output is correct
16 Correct 336 ms 29880 KB Output is correct
17 Correct 729 ms 29800 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 726 ms 30896 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 4 ms 4948 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 4948 KB Output is correct
9 Correct 3 ms 4948 KB Output is correct
10 Correct 5 ms 5008 KB Output is correct
11 Correct 2 ms 4948 KB Output is correct
12 Correct 2 ms 4948 KB Output is correct
13 Correct 3 ms 4948 KB Output is correct
14 Correct 4 ms 4948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 4948 KB Output is correct
17 Correct 3 ms 4948 KB Output is correct
18 Correct 4 ms 4948 KB Output is correct
19 Correct 224 ms 5200 KB Output is correct
20 Correct 257 ms 5284 KB Output is correct
21 Correct 284 ms 5168 KB Output is correct
22 Correct 286 ms 5232 KB Output is correct
23 Correct 1761 ms 5852 KB Output is correct
24 Correct 1872 ms 5836 KB Output is correct
25 Correct 2017 ms 5804 KB Output is correct
26 Correct 2461 ms 6120 KB Output is correct
27 Correct 3 ms 4948 KB Output is correct
28 Correct 3 ms 4948 KB Output is correct
29 Correct 5 ms 4948 KB Output is correct
30 Correct 20 ms 5108 KB Output is correct
31 Correct 89 ms 5428 KB Output is correct
32 Correct 3 ms 4948 KB Output is correct
33 Correct 3 ms 5076 KB Output is correct
34 Correct 6 ms 5076 KB Output is correct
35 Correct 40 ms 5076 KB Output is correct
36 Correct 312 ms 5228 KB Output is correct
37 Correct 1581 ms 5740 KB Output is correct
38 Correct 6 ms 5972 KB Output is correct
39 Correct 6 ms 6036 KB Output is correct
40 Correct 7 ms 5972 KB Output is correct
41 Correct 16 ms 6124 KB Output is correct
42 Correct 55 ms 6488 KB Output is correct
43 Correct 112 ms 25416 KB Output is correct
44 Correct 91 ms 25376 KB Output is correct
45 Correct 91 ms 25308 KB Output is correct
46 Correct 133 ms 25380 KB Output is correct
47 Correct 232 ms 25872 KB Output is correct
48 Correct 30 ms 5176 KB Output is correct
49 Correct 300 ms 5212 KB Output is correct
50 Correct 1485 ms 5520 KB Output is correct
51 Correct 2950 ms 5740 KB Output is correct
52 Correct 11 ms 7376 KB Output is correct
53 Correct 29 ms 7752 KB Output is correct
54 Correct 94 ms 7736 KB Output is correct
55 Correct 179 ms 7960 KB Output is correct
56 Correct 42 ms 17160 KB Output is correct
57 Correct 66 ms 17216 KB Output is correct
58 Correct 148 ms 17464 KB Output is correct
59 Correct 250 ms 17728 KB Output is correct
60 Correct 80 ms 29224 KB Output is correct
61 Correct 99 ms 29336 KB Output is correct
62 Correct 204 ms 29496 KB Output is correct
63 Correct 336 ms 29880 KB Output is correct
64 Correct 729 ms 29800 KB Output is correct
65 Incorrect 726 ms 30896 KB Output isn't correct
66 Halted 0 ms 0 KB -