#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
template<class T, int SZ> struct Seg {
T seg[2*SZ], MN = 0;
Seg() {
F0R(i,2*SZ) seg[i] = MOD;
}
T comb(T a, T b) { return min(a,b); } // easily change this to min or max
void upd(int p, T value) { // set value at position p
for (seg[p += SZ] = value; p > 1; p >>= 1)
seg[p>>1] = comb(seg[(p|1)^1],seg[p|1]); // non-commutative operations
}
void build() {
F0Rd(i,SZ) seg[i] = comb(seg[2*i],seg[2*i+1]);
}
int solve(int ind, int L, int R, int B, int Y) {
if (seg[ind] > Y) return MOD;
if (L == R) return L;
int M = (L+R)/2;
if (B <= M) {
int x = solve(2*ind,L,M,B,Y);
if (x != MOD) return x;
}
if (B <= R) {
int x = solve(2*ind+1,M+1,R,B,Y);
if (x != MOD) return x;
}
return MOD;
}
};
Seg<int,1<<18> S;
int N,Q;
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N >> Q;
F0R(i,Q) {
char c; cin >> c;
if (c == 'M') {
int X,A; cin >> X >> A;
S.upd(A,X);
} else {
int Y,B; cin >> Y >> B;
int ans = S.solve(1,0,(1<<18)-1,B,Y);
if (ans == MOD) cout << "-1\n";
else cout << ans << "\n";
}
}
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
2296 KB |
Output is correct |
2 |
Correct |
5 ms |
2540 KB |
Output is correct |
3 |
Correct |
6 ms |
2636 KB |
Output is correct |
4 |
Correct |
97 ms |
7296 KB |
Output is correct |
5 |
Correct |
100 ms |
10140 KB |
Output is correct |
6 |
Correct |
110 ms |
13852 KB |
Output is correct |
7 |
Correct |
132 ms |
17444 KB |
Output is correct |