Submission #574402

# Submission time Handle Problem Language Result Execution time Memory
574402 2022-06-08T13:28:45 Z talant117408 Race (IOI11_race) C++17
100 / 100
2133 ms 48452 KB
#include "race.h"
#include <bits/stdc++.h>

#ifndef EVAL
#include "grader.cpp"
#endif
 
using namespace std;
 
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
 
#define pb                  push_back
#define mp                  make_pair
#define all(v)              (v).begin(),(v).end()
#define sz(v)               int((v).size())
#define do_not_disturb      ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl                '\n'
 
int mod = 1e9+7;
 
ll modulo(ll a) {
    return ((a % mod) + mod) % mod;
}
 
ll add(ll a, ll b) {
    return modulo(a + b);
}
 
ll mult(ll a, ll b) {
    return modulo(a * b);
}
 
ll binpow(ll a, ll b) {
    ll res = 1;
    while (b) {
        if (b&1) {
            res = mult(res, a);
        }
        a = mult(a, a);
        b >>= 1;
    }
    return res;
}

const int MAXN = 2e5+7;
vector <pll> graph[MAXN];
ll ans = 9e18;
multiset <pll> paths;
ll n, KK;
int used[MAXN], subtree[MAXN];

void dfs(int v, int p) {
    subtree[v] = 1;
    for (auto to : graph[v]) {
        if (used[to.first] || to.first == p) continue;
        dfs(to.first, v);
        subtree[v] += subtree[to.first];
    }
}

int find_centroid(int v, int p, int saizu) {
    for (auto to : graph[v]) {
        if (used[to.first] || to.first == p) continue;
        if (subtree[to.first] * 2 > saizu) {
            return find_centroid(to.first, v, saizu);
        }
    }
    return v;
}

void get_paths(int v, int p, ll dist, int len, bool flag) {
    if (flag) {
        paths.insert(mp(dist, len));
    }
    else {
        paths.erase(paths.find(mp(dist, len)));
    }
    for (auto to : graph[v]) {
        if (used[to.first] || to.first == p) continue;
        get_paths(to.first, v, dist+to.second, len+1, flag);
    }
}

void calculate(int v, int p, ll dist, int len) {
    auto it = paths.lower_bound(mp(KK-dist, 0));
    if (it != paths.end() && (*it).first == KK-dist) {
        ans = min(ans, len+(*it).second);
    }
    for (auto to : graph[v]) {
        if (used[to.first] || to.first == p) {
            continue;
        }
        calculate(to.first, v, dist+to.second, len+1);
    }
}

void centroid_decomposition(int v) {
    dfs(v, v);
    auto centroid = find_centroid(v, v, subtree[v]);
    used[centroid] = 1;
    
    get_paths(centroid, centroid, 0, 0, 1);
    for (auto to : graph[centroid]) {
        if (used[to.first]) continue;
        get_paths(to.first, centroid, to.second, 1, 0);
        calculate(to.first, to.first, to.second, 1);
        get_paths(to.first, centroid, to.second, 1, 1);
    }
    get_paths(centroid, centroid, 0, 0, 0);
    
    for (auto to : graph[centroid]) {
        if (!used[to.first]) {
            centroid_decomposition(to.first);
        }
    }
}

int best_path(int N, int k, int h[][2], int l[]) {
    n = N;
    KK = k;
    for (int i = 0; i < n-1; i++) {
        graph[h[i][0]].pb(mp(h[i][1], l[i]));
        graph[h[i][1]].pb(mp(h[i][0], l[i]));
    }
    centroid_decomposition(1);
    return (ans > n ? -1 : ans);
}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5092 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 3 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 4 ms 4932 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 4 ms 4948 KB Output is correct
9 Correct 3 ms 5004 KB Output is correct
10 Correct 3 ms 5004 KB Output is correct
11 Correct 3 ms 4948 KB Output is correct
12 Correct 3 ms 5008 KB Output is correct
13 Correct 3 ms 4948 KB Output is correct
14 Correct 3 ms 4948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 4948 KB Output is correct
17 Correct 3 ms 5004 KB Output is correct
18 Correct 3 ms 4960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5092 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 3 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 4 ms 4932 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 4 ms 4948 KB Output is correct
9 Correct 3 ms 5004 KB Output is correct
10 Correct 3 ms 5004 KB Output is correct
11 Correct 3 ms 4948 KB Output is correct
12 Correct 3 ms 5008 KB Output is correct
13 Correct 3 ms 4948 KB Output is correct
14 Correct 3 ms 4948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 4948 KB Output is correct
17 Correct 3 ms 5004 KB Output is correct
18 Correct 3 ms 4960 KB Output is correct
19 Correct 3 ms 4948 KB Output is correct
20 Correct 4 ms 5008 KB Output is correct
21 Correct 7 ms 5076 KB Output is correct
22 Correct 6 ms 5076 KB Output is correct
23 Correct 6 ms 5076 KB Output is correct
24 Correct 6 ms 5076 KB Output is correct
25 Correct 7 ms 5144 KB Output is correct
26 Correct 6 ms 5144 KB Output is correct
27 Correct 5 ms 5076 KB Output is correct
28 Correct 5 ms 5076 KB Output is correct
29 Correct 5 ms 5076 KB Output is correct
30 Correct 5 ms 5076 KB Output is correct
31 Correct 6 ms 5076 KB Output is correct
32 Correct 6 ms 5152 KB Output is correct
33 Correct 6 ms 5076 KB Output is correct
34 Correct 6 ms 5148 KB Output is correct
35 Correct 6 ms 5172 KB Output is correct
36 Correct 7 ms 5076 KB Output is correct
37 Correct 6 ms 5076 KB Output is correct
38 Correct 7 ms 5268 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5092 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 3 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 4 ms 4932 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 4 ms 4948 KB Output is correct
9 Correct 3 ms 5004 KB Output is correct
10 Correct 3 ms 5004 KB Output is correct
11 Correct 3 ms 4948 KB Output is correct
12 Correct 3 ms 5008 KB Output is correct
13 Correct 3 ms 4948 KB Output is correct
14 Correct 3 ms 4948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 4948 KB Output is correct
17 Correct 3 ms 5004 KB Output is correct
18 Correct 3 ms 4960 KB Output is correct
19 Correct 871 ms 19828 KB Output is correct
20 Correct 864 ms 19664 KB Output is correct
21 Correct 870 ms 19660 KB Output is correct
22 Correct 734 ms 19632 KB Output is correct
23 Correct 946 ms 20212 KB Output is correct
24 Correct 461 ms 19340 KB Output is correct
25 Correct 790 ms 26404 KB Output is correct
26 Correct 510 ms 27116 KB Output is correct
27 Correct 738 ms 35068 KB Output is correct
28 Correct 1813 ms 48452 KB Output is correct
29 Correct 1849 ms 44876 KB Output is correct
30 Correct 752 ms 35004 KB Output is correct
31 Correct 790 ms 35216 KB Output is correct
32 Correct 927 ms 35072 KB Output is correct
33 Correct 1416 ms 33844 KB Output is correct
34 Correct 1734 ms 34656 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5092 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 3 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 4 ms 4932 KB Output is correct
6 Correct 3 ms 4948 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 4 ms 4948 KB Output is correct
9 Correct 3 ms 5004 KB Output is correct
10 Correct 3 ms 5004 KB Output is correct
11 Correct 3 ms 4948 KB Output is correct
12 Correct 3 ms 5008 KB Output is correct
13 Correct 3 ms 4948 KB Output is correct
14 Correct 3 ms 4948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 4948 KB Output is correct
17 Correct 3 ms 5004 KB Output is correct
18 Correct 3 ms 4960 KB Output is correct
19 Correct 3 ms 4948 KB Output is correct
20 Correct 4 ms 5008 KB Output is correct
21 Correct 7 ms 5076 KB Output is correct
22 Correct 6 ms 5076 KB Output is correct
23 Correct 6 ms 5076 KB Output is correct
24 Correct 6 ms 5076 KB Output is correct
25 Correct 7 ms 5144 KB Output is correct
26 Correct 6 ms 5144 KB Output is correct
27 Correct 5 ms 5076 KB Output is correct
28 Correct 5 ms 5076 KB Output is correct
29 Correct 5 ms 5076 KB Output is correct
30 Correct 5 ms 5076 KB Output is correct
31 Correct 6 ms 5076 KB Output is correct
32 Correct 6 ms 5152 KB Output is correct
33 Correct 6 ms 5076 KB Output is correct
34 Correct 6 ms 5148 KB Output is correct
35 Correct 6 ms 5172 KB Output is correct
36 Correct 7 ms 5076 KB Output is correct
37 Correct 6 ms 5076 KB Output is correct
38 Correct 7 ms 5268 KB Output is correct
39 Correct 871 ms 19828 KB Output is correct
40 Correct 864 ms 19664 KB Output is correct
41 Correct 870 ms 19660 KB Output is correct
42 Correct 734 ms 19632 KB Output is correct
43 Correct 946 ms 20212 KB Output is correct
44 Correct 461 ms 19340 KB Output is correct
45 Correct 790 ms 26404 KB Output is correct
46 Correct 510 ms 27116 KB Output is correct
47 Correct 738 ms 35068 KB Output is correct
48 Correct 1813 ms 48452 KB Output is correct
49 Correct 1849 ms 44876 KB Output is correct
50 Correct 752 ms 35004 KB Output is correct
51 Correct 790 ms 35216 KB Output is correct
52 Correct 927 ms 35072 KB Output is correct
53 Correct 1416 ms 33844 KB Output is correct
54 Correct 1734 ms 34656 KB Output is correct
55 Correct 44 ms 6484 KB Output is correct
56 Correct 58 ms 6428 KB Output is correct
57 Correct 749 ms 20360 KB Output is correct
58 Correct 137 ms 18872 KB Output is correct
59 Correct 579 ms 27036 KB Output is correct
60 Correct 1693 ms 44684 KB Output is correct
61 Correct 752 ms 35392 KB Output is correct
62 Correct 702 ms 35004 KB Output is correct
63 Correct 826 ms 35172 KB Output is correct
64 Correct 2133 ms 35096 KB Output is correct
65 Correct 1758 ms 35660 KB Output is correct
66 Correct 1699 ms 47380 KB Output is correct
67 Correct 378 ms 34260 KB Output is correct
68 Correct 952 ms 35076 KB Output is correct
69 Correct 873 ms 35208 KB Output is correct
70 Correct 807 ms 33636 KB Output is correct