제출 #57414

#제출 시각아이디문제언어결과실행 시간메모리
57414BenqEvacuation plan (IZhO18_plan)C++14
100 / 100
1380 ms33604 KiB
#include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 100001; int n,m,q,l[MX],r[MX]; pi p[MX]; vi tri[MX]; vi po; template<int SZ> struct Dijkstra { int dist[SZ]; vector<pi> adj[SZ]; priority_queue<pi,vector<pi>,greater<pi>> q; void addEdge(int a, int b, int c) { adj[a].pb({b,c}), adj[b].pb({a,c}); // cout << a << " " << b << " " << c << "\n"; } void gen() { fill_n(dist,SZ,MOD); for (int i: po) { dist[i] = 0; q.push({0,i}); } while (q.size()) { pi x = q.top(); q.pop(); if (dist[x.s] < x.f) continue; for (pi y: adj[x.s]) if (x.f+y.s < dist[y.f]) { dist[y.f] = x.f+y.s; // cout << "OOPS " << x.f << " " << y.f << " " << y.s << "\n"; q.push({dist[y.f],y.f}); } } } }; Dijkstra<MX> D; template<int SZ> struct DSU { int par[SZ], sz[SZ]; DSU() { F0R(i,SZ) par[i] = i, sz[i] = 1; } int get(int x) { // path compression if (par[x] != x) par[x] = get(par[x]); return par[x]; } bool unite(int x, int y) { // union-by-rank x = get(x), y = get(y); if (x == y) return 0; if (sz[x] < sz[y]) swap(x,y); sz[x] += sz[y], par[y] = x; return 1; } }; vpi v; void binSearch() { F0R(i,MX) tri[i].clear(); F0R(i,q) tri[(l[i]+r[i])/2].pb(i); DSU<MX> Z = DSU<MX>(); F0R(i,sz(v)) { for (auto a: D.adj[v[i].s]) if (D.dist[a.f] >= D.dist[v[i].s]) Z.unite(a.f,v[i].s); for (int x: tri[i]) { if (Z.get(p[x].f) == Z.get(p[x].s)) r[x] = i; else l[x] = i+1; } } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> m; F0R(i,m) { int a,b,c; cin >> a >> b >> c; D.addEdge(a,b,c); } int k; cin >> k; F0R(i,k) { int g; cin >> g; po.pb(g); } D.gen(); FOR(i,1,n+1) v.pb({D.dist[i],i}); sort(all(v)); reverse(all(v)); cin >> q; F0R(i,q) { cin >> p[i].f >> p[i].s; l[i] = 0, r[i] = sz(v)-1; } F0R(i,17) binSearch(); F0R(i,q) cout << v[l[i]].f << "\n"; } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...