Submission #572647

# Submission time Handle Problem Language Result Execution time Memory
572647 2022-06-04T22:33:32 Z Plurm Mars (APIO22_mars) C++17
36 / 100
2486 ms 3528 KB
#include "mars.h"
#include <bits/stdc++.h>
using namespace std;

void dfs(int N, map<pair<int, int>, vector<pair<int, int>>> &g,
         vector<string> &table, int i, int j, int &idx, const string &code) {
  if (i >= 2 * N + 1 || j >= 2 * N + 1)
    return;
  table[i][j] = code[idx];
  idx++;
  for (auto nxt : g[{i, j}]) {
    dfs(N, g, table, nxt.first, nxt.second, idx, code);
  }
}

bool dfsw(int N, map<pair<int, int>, vector<pair<int, int>>> &g,
          map<pair<int, int>, int> &w, int i, int j) {
  if (i >= 2 * N + 1 || j >= 2 * N + 1)
    return false;
  for (auto nxt : g[{i, j}]) {
    if (dfsw(N, g, w, nxt.first, nxt.second))
      w[{i, j}]++;
    w[{i, j}] += w[nxt];
  }
  return true;
}

void dfscc(int N, vector<vector<bool>> &found, vector<string> &table, int i,
           int j) {
  if (found[i][j])
    return;
  if (table[i][j] != '1')
    return;
  found[i][j] = true;
  for (int dx = -1; dx <= 1; dx++) {
    for (int dy = -1; dy <= 1; dy++) {
      if (abs(dx + dy) == 1 && 0 <= i + dx && i + dx < 2 * N + 1 && 0 <= j + dy &&
          j + dy < 2 * N + 1) {
        dfscc(N, found, table, i + dx, j + dy);
      }
    }
  }
}

std::string process(std::vector<std::vector<std::string>> a, int i, int j,
                    int k, int n) {
  map<pair<int, int>, vector<pair<int, int>>> g;
  map<pair<int, int>, int> w;
  g[{0, 2}] = {{1, 3}, {2, 3}, {0, 4}, {0, 3}};
  g[{0, 4}] = {{2, 6}, {1, 5}, {0, 6}, {0, 5}};
  g[{0, 6}] = {{0, 7}, {2, 8}, {1, 7}, {0, 8}};
  g[{0, 8}] = {{2, 10}, {0, 9}, {0, 10}};
  g[{0, 10}] = {{1, 12}, {0, 12}, {0, 11}};
  g[{0, 12}] = {{2, 14}, {0, 13}, {0, 14}};
  g[{0, 14}] = {{0, 15}, {0, 16}, {1, 15}};
  g[{0, 16}] = {{1, 17}, {1, 18}, {0, 17}, {0, 18}};
  g[{0, 18}] = {{1, 19}, {0, 20}, {1, 20}, {0, 19}};
  g[{1, 2}] = {{3, 4}, {2, 4}, {1, 4}};
  g[{1, 4}] = {{1, 6}};
  g[{1, 6}] = {{3, 8}, {1, 8}};
  g[{1, 8}] = {{3, 9}, {1, 10}, {3, 10}, {1, 9}};
  g[{1, 10}] = {{2, 12}, {1, 11}};
  g[{1, 12}] = {{3, 13}, {1, 13}, {2, 13}, {1, 14}};
  g[{1, 14}] = {{3, 16}, {1, 16}};
  g[{1, 16}] = {{2, 17}, {3, 18}, {2, 18}};
  g[{1, 18}] = {{3, 20}, {2, 19}, {2, 20}};
  g[{2, 0}] = {{3, 2}, {4, 0}, {3, 0}};
  g[{2, 1}] = {{3, 1}, {4, 1}, {3, 3}, {4, 3}};
  g[{2, 2}] = {{4, 2}, {4, 4}};
  g[{2, 4}] = {{2, 5}, {3, 6}};
  g[{2, 6}] = {{4, 7}, {3, 7}, {2, 7}};
  g[{2, 8}] = {{4, 9}, {4, 10}, {2, 9}};
  g[{2, 10}] = {{2, 11}, {3, 12}};
  g[{2, 12}] = {{3, 14}, {4, 13}};
  g[{2, 14}] = {{3, 15}, {2, 15}, {2, 16}};
  g[{2, 16}] = {{4, 17}, {4, 18}};
  g[{2, 18}] = {{4, 19}, {4, 20}};
  g[{3, 4}] = {{5, 6}, {3, 5}};
  g[{3, 6}] = {{5, 7}, {5, 8}};
  g[{3, 8}] = {{5, 10}};
  g[{3, 10}] = {{4, 11}, {3, 11}, {4, 12}, {5, 12}};
  g[{3, 12}] = {{5, 14}};
  g[{3, 14}] = {{4, 16}, {4, 15}};
  g[{3, 16}] = {{5, 17}, {3, 17}, {5, 18}};
  g[{3, 18}] = {{5, 19}, {3, 19}};
  g[{4, 0}] = {{6, 2}, {5, 0}, {6, 0}};
  g[{4, 1}] = {{6, 3}, {5, 1}, {6, 1}};
  g[{4, 2}] = {{5, 3}, {6, 4}, {5, 2}};
  g[{4, 3}] = {{4, 5}, {6, 5}};
  g[{4, 4}] = {{5, 4}, {5, 5}, {4, 6}, {6, 6}};
  g[{4, 6}] = {{6, 7}, {4, 8}};
  g[{4, 8}] = {{6, 9}, {5, 9}};
  g[{4, 10}] = {{5, 11}, {6, 12}};
  g[{4, 12}] = {{4, 14}, {6, 13}};
  g[{4, 14}] = {{6, 15}, {5, 15}, {5, 16}};
  g[{4, 16}] = {{6, 18}};
  g[{4, 18}] = {{5, 20}, {6, 20}};
  g[{5, 6}] = {{6, 8}, {7, 7}};
  g[{5, 8}] = {{6, 10}};
  g[{5, 10}] = {{7, 12}};
  g[{5, 12}] = {{7, 13}, {5, 13}, {6, 14}};
  g[{5, 14}] = {{7, 16}};
  g[{5, 16}] = {{7, 17}, {6, 17}};
  g[{5, 18}] = {{7, 20}, {6, 19}, {7, 19}};
  g[{6, 0}] = {{8, 0}, {7, 0}};
  g[{6, 1}] = {{7, 1}, {7, 3}, {8, 2}, {8, 1}};
  g[{6, 2}] = {{7, 2}, {7, 4}, {8, 4}, {8, 3}};
  g[{6, 3}] = {{8, 5}, {7, 5}};
  g[{6, 4}] = {{8, 6}};
  g[{6, 5}] = {{7, 6}, {8, 7}};
  g[{6, 6}] = {{7, 8}, {8, 8}};
  g[{6, 8}] = {{8, 9}, {7, 9}};
  g[{6, 10}] = {{7, 11}, {6, 11}, {8, 12}};
  g[{6, 12}] = {{7, 14}, {8, 13}};
  g[{6, 14}] = {{6, 16}};
  g[{6, 16}] = {{8, 18}};
  g[{6, 18}] = {{8, 19}, {8, 20}};
  g[{7, 8}] = {{9, 9}, {7, 10}, {9, 10}};
  g[{7, 10}] = {{9, 12}};
  g[{7, 12}] = {{9, 14}};
  g[{7, 14}] = {{7, 15}, {8, 15}, {9, 15}, {8, 16}};
  g[{7, 16}] = {{8, 17}, {7, 18}, {9, 17}};
  g[{7, 18}] = {{9, 20}, {9, 19}};
  g[{8, 0}] = {{9, 2}, {10, 2}, {9, 1}, {10, 0}, {9, 0}};
  g[{8, 1}] = {{10, 1}};
  g[{8, 2}] = {{10, 4}};
  g[{8, 3}] = {{9, 5}, {9, 3}, {10, 3}};
  g[{8, 4}] = {{9, 4}, {10, 5}, {9, 6}};
  g[{8, 5}] = {{10, 6}, {9, 7}};
  g[{8, 6}] = {{10, 8}, {10, 7}};
  g[{8, 7}] = {{10, 9}, {9, 8}};
  g[{8, 8}] = {{8, 10}, {10, 10}};
  g[{8, 10}] = {{8, 11}, {10, 11}, {9, 11}, {10, 12}};
  g[{8, 12}] = {{10, 14}, {9, 13}, {8, 14}};
  g[{8, 14}] = {{10, 15}, {10, 16}};
  g[{8, 16}] = {{10, 18}, {10, 17}};
  g[{8, 18}] = {{10, 20}, {10, 19}};
  g[{9, 10}] = {{11, 10}, {11, 12}};
  g[{9, 12}] = {{11, 14}};
  g[{9, 14}] = {{9, 16}, {11, 16}};
  g[{9, 16}] = {{11, 17}, {9, 18}};
  g[{9, 18}] = {{11, 20}, {11, 19}};
  g[{10, 0}] = {{11, 1}, {12, 2}, {11, 0}, {12, 0}};
  g[{10, 1}] = {{12, 1}};
  g[{10, 2}] = {{12, 3}, {11, 2}};
  g[{10, 3}] = {{11, 4}, {11, 3}, {12, 5}};
  g[{10, 4}] = {{12, 6}, {12, 4}};
  g[{10, 5}] = {{11, 7}, {11, 5}, {11, 6}};
  g[{10, 6}] = {{11, 8}, {12, 7}};
  g[{10, 7}] = {{11, 9}, {12, 8}};
  g[{10, 8}] = {{12, 9}};
  g[{10, 9}] = {{12, 11}, {12, 10}};
  g[{10, 10}] = {{11, 11}, {12, 12}};
  g[{10, 12}] = {{12, 13}, {10, 13}, {12, 14}};
  g[{10, 14}] = {{12, 16}};
  g[{10, 16}] = {{12, 17}, {12, 18}};
  g[{10, 18}] = {{12, 19}, {12, 20}};
  g[{11, 12}] = {{13, 14}, {11, 13}};
  g[{11, 14}] = {{13, 16}, {11, 15}, {13, 15}};
  g[{11, 16}] = {{13, 18}, {11, 18}};
  g[{11, 18}] = {{13, 19}, {13, 20}};
  g[{12, 0}] = {{14, 2}, {13, 0}, {14, 0}};
  g[{12, 1}] = {{13, 3}, {13, 1}, {13, 2}, {14, 1}};
  g[{12, 2}] = {{14, 3}};
  g[{12, 3}] = {{14, 5}};
  g[{12, 4}] = {{13, 6}, {13, 4}, {14, 4}, {13, 5}, {14, 6}};
  g[{12, 5}] = {{14, 7}};
  g[{12, 6}] = {{14, 8}, {13, 7}};
  g[{12, 7}] = {{14, 9}};
  g[{12, 8}] = {{13, 10}, {14, 10}, {13, 8}, {13, 9}};
  g[{12, 9}] = {{14, 11}};
  g[{12, 10}] = {{14, 12}};
  g[{12, 11}] = {{13, 13}, {13, 12}, {13, 11}};
  g[{12, 12}] = {{14, 13}, {14, 14}};
  g[{12, 14}] = {{14, 16}, {12, 15}};
  g[{12, 16}] = {{14, 17}, {13, 17}, {14, 18}};
  g[{12, 18}] = {{14, 20}, {14, 19}};
  g[{13, 14}] = {{15, 16}, {15, 15}};
  g[{13, 16}] = {{15, 17}, {15, 18}};
  g[{13, 18}] = {{15, 19}, {15, 20}};
  g[{14, 0}] = {{15, 0}, {16, 0}, {15, 1}};
  g[{14, 1}] = {{16, 2}, {16, 1}};
  g[{14, 2}] = {{15, 2}, {16, 4}, {16, 3}};
  g[{14, 3}] = {{16, 5}, {15, 3}};
  g[{14, 4}] = {{15, 5}, {15, 6}, {15, 4}};
  g[{14, 5}] = {{16, 6}};
  g[{14, 6}] = {{15, 8}, {16, 8}, {15, 7}};
  g[{14, 7}] = {{15, 9}, {16, 9}, {16, 7}};
  g[{14, 8}] = {{15, 10}, {16, 10}};
  g[{14, 9}] = {{16, 11}};
  g[{14, 10}] = {{15, 11}, {15, 12}};
  g[{14, 11}] = {{15, 13}, {16, 13}};
  g[{14, 12}] = {{16, 12}};
  g[{14, 13}] = {{16, 15}, {14, 15}, {16, 14}};
  g[{14, 14}] = {{16, 16}, {15, 14}};
  g[{14, 16}] = {{16, 18}, {16, 17}};
  g[{14, 18}] = {{16, 20}, {16, 19}};
  g[{15, 16}] = {{17, 18}, {17, 16}};
  g[{15, 18}] = {{17, 20}, {17, 19}};
  g[{16, 0}] = {{17, 0}, {18, 0}, {17, 1}};
  g[{16, 1}] = {{18, 3}, {18, 1}};
  g[{16, 2}] = {{17, 2}, {17, 4}, {18, 2}};
  g[{16, 3}] = {{17, 5}, {17, 3}, {18, 5}};
  g[{16, 4}] = {{18, 4}};
  g[{16, 5}] = {{17, 7}, {17, 6}, {18, 6}};
  g[{16, 6}] = {{17, 8}, {18, 8}, {18, 7}};
  g[{16, 7}] = {{17, 9}, {18, 9}};
  g[{16, 8}] = {{18, 10}};
  g[{16, 9}] = {{18, 11}};
  g[{16, 10}] = {{17, 12}, {17, 10}, {17, 11}};
  g[{16, 11}] = {{17, 13}, {18, 12}};
  g[{16, 12}] = {{18, 14}, {18, 13}};
  g[{16, 13}] = {{17, 14}, {18, 15}};
  g[{16, 14}] = {{18, 16}, {17, 15}};
  g[{16, 15}] = {{18, 17}};
  g[{16, 16}] = {{17, 17}, {18, 18}};
  g[{16, 18}] = {{18, 19}, {18, 20}};
  g[{17, 18}] = {{19, 18}, {19, 20}};
  g[{18, 0}] = {{19, 2}, {20, 1}, {20, 0}, {19, 0}};
  g[{18, 1}] = {{20, 2}, {19, 1}, {20, 3}};
  g[{18, 2}] = {{19, 3}, {20, 4}};
  g[{18, 3}] = {{20, 5}, {19, 4}};
  g[{18, 4}] = {{20, 6}, {19, 5}};
  g[{18, 5}] = {{20, 7}, {19, 7}};
  g[{18, 6}] = {{19, 6}, {19, 8}};
  g[{18, 7}] = {{20, 9}, {19, 9}};
  g[{18, 8}] = {{20, 8}, {20, 10}};
  g[{18, 9}] = {{19, 10}, {20, 11}};
  g[{18, 10}] = {{20, 12}, {19, 11}};
  g[{18, 11}] = {{19, 12}, {19, 13}};
  g[{18, 12}] = {{20, 13}, {20, 14}, {19, 14}};
  g[{18, 13}] = {{19, 15}, {20, 15}};
  g[{18, 14}] = {{20, 16}, {19, 16}};
  g[{18, 15}] = {{20, 17}, {19, 17}};
  g[{18, 16}] = {{20, 18}};
  g[{18, 17}] = {{19, 19}, {20, 19}};
  g[{18, 18}] = {{20, 20}};
  dfsw(n, g, w, 2, 0);
  dfsw(n, g, w, 2, 1);
  dfsw(n, g, w, 2, 2);
  dfsw(n, g, w, 1, 2);
  dfsw(n, g, w, 0, 2);
  int m = 2 * (n - k - 1);
  if (k == n - 1) {
    // process the tree.
    vector<string> table;
    table.resize(2 * n + 1, string(2 * n + 1, '0'));
    table[0][0] = a[0][0][0];
    table[0][1] = a[0][1][0];
    table[1][0] = a[1][0][0];
    table[1][1] = a[1][1][0];
    int idx = 0;
    dfs(n, g, table, 2, 0, idx, a[2][0]);
    idx = 0;
    dfs(n, g, table, 2, 1, idx, a[2][1]);
    idx = 0;
    dfs(n, g, table, 2, 2, idx, a[2][2]);
    idx = 0;
    dfs(n, g, table, 1, 2, idx, a[1][2]);
    idx = 0;
    dfs(n, g, table, 0, 2, idx, a[0][2]);
    int cccnt = 0;
    vector<vector<bool>> found;
    vector<bool> tmp;
    tmp.resize(2 * n + 1, false);
    found.resize(2 * n + 1, tmp);
    for (int i = 0; i < 2 * n + 1; i++) {
      for (int j = 0; j < 2 * n + 1; j++) {
        if (!found[i][j] && table[i][j] == '1') {
          dfscc(n, found, table, i, j);
          cccnt++;
        }
      }
    }
    string out(100, '0');
    for (int i = 0; i < 30; i++) {
      if (cccnt & (1 << i))
        out[i] = '1';
    }
    return out;
  } else if ((i == m && j <= m) || (i <= m && j == m)) {
    // lift up the information.
    // preorder lifting.
    string s;
    s.push_back(a[0][0][0]);
    for (auto p : g[{i, j}]) {
      string tmp = a[p.first - i][p.second - j];
      for (int l = 0; l <= w[p]; l++) {
        s.push_back(tmp[l]);
      }
    }
    while (s.size() < 100)
      s.push_back('0');
    return s;
  } else {
    return a[0][0];
  }
}
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
21 Correct 503 ms 2888 KB Output is correct
22 Correct 916 ms 3164 KB Output is correct
23 Correct 912 ms 3112 KB Output is correct
24 Correct 944 ms 3168 KB Output is correct
25 Correct 916 ms 3140 KB Output is correct
26 Correct 910 ms 3136 KB Output is correct
27 Correct 915 ms 3204 KB Output is correct
28 Correct 911 ms 3136 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
21 Correct 503 ms 2888 KB Output is correct
22 Correct 916 ms 3164 KB Output is correct
23 Correct 912 ms 3112 KB Output is correct
24 Correct 944 ms 3168 KB Output is correct
25 Correct 916 ms 3140 KB Output is correct
26 Correct 910 ms 3136 KB Output is correct
27 Correct 915 ms 3204 KB Output is correct
28 Correct 911 ms 3136 KB Output is correct
29 Correct 1622 ms 3284 KB Output is correct
30 Correct 2452 ms 3528 KB Output is correct
31 Correct 2485 ms 3316 KB Output is correct
32 Correct 2443 ms 3504 KB Output is correct
33 Correct 2445 ms 3332 KB Output is correct
34 Correct 2447 ms 3496 KB Output is correct
35 Correct 2475 ms 3324 KB Output is correct
36 Correct 2486 ms 3524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
21 Correct 503 ms 2888 KB Output is correct
22 Correct 916 ms 3164 KB Output is correct
23 Correct 912 ms 3112 KB Output is correct
24 Correct 944 ms 3168 KB Output is correct
25 Correct 916 ms 3140 KB Output is correct
26 Correct 910 ms 3136 KB Output is correct
27 Correct 915 ms 3204 KB Output is correct
28 Correct 911 ms 3136 KB Output is correct
29 Correct 1622 ms 3284 KB Output is correct
30 Correct 2452 ms 3528 KB Output is correct
31 Correct 2485 ms 3316 KB Output is correct
32 Correct 2443 ms 3504 KB Output is correct
33 Correct 2445 ms 3332 KB Output is correct
34 Correct 2447 ms 3496 KB Output is correct
35 Correct 2475 ms 3324 KB Output is correct
36 Correct 2486 ms 3524 KB Output is correct
37 Incorrect 421 ms 436 KB Incorrect
38 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
21 Correct 503 ms 2888 KB Output is correct
22 Correct 916 ms 3164 KB Output is correct
23 Correct 912 ms 3112 KB Output is correct
24 Correct 944 ms 3168 KB Output is correct
25 Correct 916 ms 3140 KB Output is correct
26 Correct 910 ms 3136 KB Output is correct
27 Correct 915 ms 3204 KB Output is correct
28 Correct 911 ms 3136 KB Output is correct
29 Correct 1622 ms 3284 KB Output is correct
30 Correct 2452 ms 3528 KB Output is correct
31 Correct 2485 ms 3316 KB Output is correct
32 Correct 2443 ms 3504 KB Output is correct
33 Correct 2445 ms 3332 KB Output is correct
34 Correct 2447 ms 3496 KB Output is correct
35 Correct 2475 ms 3324 KB Output is correct
36 Correct 2486 ms 3524 KB Output is correct
37 Incorrect 421 ms 436 KB Incorrect
38 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
21 Correct 503 ms 2888 KB Output is correct
22 Correct 916 ms 3164 KB Output is correct
23 Correct 912 ms 3112 KB Output is correct
24 Correct 944 ms 3168 KB Output is correct
25 Correct 916 ms 3140 KB Output is correct
26 Correct 910 ms 3136 KB Output is correct
27 Correct 915 ms 3204 KB Output is correct
28 Correct 911 ms 3136 KB Output is correct
29 Correct 1622 ms 3284 KB Output is correct
30 Correct 2452 ms 3528 KB Output is correct
31 Correct 2485 ms 3316 KB Output is correct
32 Correct 2443 ms 3504 KB Output is correct
33 Correct 2445 ms 3332 KB Output is correct
34 Correct 2447 ms 3496 KB Output is correct
35 Correct 2475 ms 3324 KB Output is correct
36 Correct 2486 ms 3524 KB Output is correct
37 Incorrect 421 ms 436 KB Incorrect
38 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
21 Correct 503 ms 2888 KB Output is correct
22 Correct 916 ms 3164 KB Output is correct
23 Correct 912 ms 3112 KB Output is correct
24 Correct 944 ms 3168 KB Output is correct
25 Correct 916 ms 3140 KB Output is correct
26 Correct 910 ms 3136 KB Output is correct
27 Correct 915 ms 3204 KB Output is correct
28 Correct 911 ms 3136 KB Output is correct
29 Correct 1622 ms 3284 KB Output is correct
30 Correct 2452 ms 3528 KB Output is correct
31 Correct 2485 ms 3316 KB Output is correct
32 Correct 2443 ms 3504 KB Output is correct
33 Correct 2445 ms 3332 KB Output is correct
34 Correct 2447 ms 3496 KB Output is correct
35 Correct 2475 ms 3324 KB Output is correct
36 Correct 2486 ms 3524 KB Output is correct
37 Incorrect 421 ms 436 KB Incorrect
38 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 2176 KB Output is correct
2 Correct 8 ms 2192 KB Output is correct
3 Correct 9 ms 2104 KB Output is correct
4 Correct 9 ms 2320 KB Output is correct
5 Correct 9 ms 1984 KB Output is correct
6 Correct 8 ms 2448 KB Output is correct
7 Correct 28 ms 2412 KB Output is correct
8 Correct 54 ms 2356 KB Output is correct
9 Correct 53 ms 2352 KB Output is correct
10 Correct 54 ms 2420 KB Output is correct
11 Correct 52 ms 2412 KB Output is correct
12 Correct 52 ms 2396 KB Output is correct
13 Correct 51 ms 2336 KB Output is correct
14 Correct 149 ms 2712 KB Output is correct
15 Correct 246 ms 2828 KB Output is correct
16 Correct 247 ms 2820 KB Output is correct
17 Correct 248 ms 2884 KB Output is correct
18 Correct 251 ms 2788 KB Output is correct
19 Correct 253 ms 2812 KB Output is correct
20 Correct 250 ms 2808 KB Output is correct
21 Correct 503 ms 2888 KB Output is correct
22 Correct 916 ms 3164 KB Output is correct
23 Correct 912 ms 3112 KB Output is correct
24 Correct 944 ms 3168 KB Output is correct
25 Correct 916 ms 3140 KB Output is correct
26 Correct 910 ms 3136 KB Output is correct
27 Correct 915 ms 3204 KB Output is correct
28 Correct 911 ms 3136 KB Output is correct
29 Correct 1622 ms 3284 KB Output is correct
30 Correct 2452 ms 3528 KB Output is correct
31 Correct 2485 ms 3316 KB Output is correct
32 Correct 2443 ms 3504 KB Output is correct
33 Correct 2445 ms 3332 KB Output is correct
34 Correct 2447 ms 3496 KB Output is correct
35 Correct 2475 ms 3324 KB Output is correct
36 Correct 2486 ms 3524 KB Output is correct
37 Incorrect 421 ms 436 KB Incorrect
38 Halted 0 ms 0 KB -