Submission #57079

#TimeUsernameProblemLanguageResultExecution timeMemory
57079BenqBoat (APIO16_boat)C++14
100 / 100
1316 ms3820 KiB
#include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 100001; ll po (ll b, ll p) { return !p?1:po(b*b%MOD,p/2)*(p&1?b:1)%MOD; } ll inv (ll b) { return po(b,MOD-2); } ll ad(ll a, ll b) { return (a+b)%MOD; } ll sub(ll a, ll b) { return (a-b+MOD)%MOD; } ll mul(ll a, ll b) { return a*b%MOD; } ll divi(ll a, ll b) { return mul(a,inv(b)); } int N, dp[1000][501], in[1001]; vi rm; map<int,int> m; vpi v; void input() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> N; F0R(i,N) { int a,b; cin >> a >> b; v.pb({a,b}); m[a-1] = m[b] = 0; } FOR(i,1,1001) in[i] = inv(i); int co = 0; for (auto& a: m) { rm.pb(a.f); a.s = co++; } } int main() { input(); F0R(i,sz(v)) { auto a = v[i]; int l = m[a.f-1]+1, r = m[a.s]; int csum = 1; FOR(j,1,r+1) { int tmp = 0; F0R(k,i) tmp = ad(tmp,dp[j][k]); if (l <= j) { int w = rm[j]-rm[j-1]; FORd(k,1,i+1) dp[j][k] = ad(dp[j][k],mul(dp[j][k-1],mul(w-k,in[k+1]))); dp[j][0] = ad(dp[j][0],mul(w,csum)); } csum = ad(csum,tmp); } } int ans = 0; FOR(i,1,sz(m)) F0R(j,sz(v)) ans = ad(ans,dp[i][j]); cout << ans; } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...