This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#ifdef DEBUG
#include "../templates/debug.h"
#else
#define deb(x...)
#endif
using namespace std;
typedef unsigned long long ull;
// Generate random base in (before, after) open interval:
int gen_base(const int before, const int after) {
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 mt_rand(seed);
int base = std::uniform_int_distribution<int>(before+1, after)(mt_rand);
return base % 2 == 0 ? base-1 : base;
}
struct PolyHash {/*{{{*/
// -------- Static variables --------
static const int mod = (int)1e9+123; // prime mod of polynomial hashing
static std::vector<int> pow1; // powers of base modulo mod
static std::vector<ull> pow2; // powers of base modulo 2^64
static int base; // base (point of hashing)
// --------- Static functons --------
static inline int diff(int a, int b) {
// Diff between `a` and `b` modulo mod (0 <= a < mod, 0 <= b < mod)
return (a -= b) < 0 ? a + mod : a;
}
// -------------- Variables of class -------------
std::vector<int> pref1; // Hash on prefix modulo mod
std::vector<ull> pref2; // Hash on prefix modulo 2^64
// Cunstructor from string:
PolyHash(const std::string& s)
: pref1(s.size()+1u, 0)
, pref2(s.size()+1u, 0)
{
assert(base < mod);
const int n = s.size(); // Firstly calculated needed power of base:
while ((int)pow1.size() <= n) {
pow1.push_back(1LL * pow1.back() * base % mod);
pow2.push_back(pow2.back() * base);
}
for (int i = 0; i < n; ++i) { // Fill arrays with polynomial hashes on prefix
assert(base > s[i]);
pref1[i+1] = (pref1[i] + 1LL * s[i] * pow1[i]) % mod;
pref2[i+1] = pref2[i] + s[i] * pow2[i];
}
}
// Polynomial hash of subsequence [pos, pos+len)
// If mxPow != 0, value automatically multiply on base in needed power. Finally base ^ mxPow
inline std::pair<int, ull> operator()(const int pos, const int len, const int mxPow = 0) const {
int hash1 = pref1[pos+len] - pref1[pos];
ull hash2 = pref2[pos+len] - pref2[pos];
if (hash1 < 0) hash1 += mod;
if (mxPow != 0) {
hash1 = 1LL * hash1 * pow1[mxPow-(pos+len-1)] % mod;
hash2 *= pow2[mxPow-(pos+len-1)];
}
return std::make_pair(hash1, hash2);
}
};/*}}}*/
int PolyHash::base((int)1e9 + 7);
vector<int> PolyHash::pow1{1};
vector<ull> PolyHash::pow2{1};
int brute(string s){
// O(n^2) is easy
// Find all palindromes and put it in a map and then itterate to find maximum
int n = s.size();
vector<vector<bool>> is_pali(n, vector<bool>(n));
for(int siz = 0;siz<n;siz++){
for(int i = 0;i + siz<n;i++){
int j = i + siz;
if(siz == 0)is_pali[i][j] = true;
else if(siz == 1)is_pali[i][j] = (s[i] == s[j]);
else is_pali[i][j] = ((s[i] == s[j])&&is_pali[i + 1][j - 1]);
}
}
PolyHash hs(s);
// map<pair<int,ull>, int> ma;
unordered_map<int,int> ma;
vector<int> mx(n + 1, 0);
for(int siz = 0;siz<n;siz++){
for(int i = 0;i+siz<n;i++){
int j = i + siz;
if(is_pali[i][j]){
auto temp = hs(i, siz + 1, n);
int val = ++ma[temp.first];
mx[siz + 1] = max(mx[siz + 1], val);
}
}
}
deb(ma);
int ans = 0;
for(int i = 0;i<n + 1;i++){
ans = max(ans, i*mx[i]);
}
return ans;
}
signed main(){
string s;cin >> s;
cout << brute(s) << "\n";
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |