#line 2 "library/other/template.hpp"
#include<bits/stdc++.h>
#ifndef __COUNTER__
#define __COUNTER__ __LINE__
#endif
#define REP_SELECTER(a, b, c, d, e, ...) e
#define REP1_0(b, c) REP1_1(b, c)
#define REP1_1(b, c) for (ll REP_COUNTER_ ## c = 0; REP_COUNTER_ ## c < (ll)(b); ++ REP_COUNTER_ ## c)
#define REP1(b) REP1_0(b, __COUNTER__)
#define REP2(i, b) for (ll i = 0; i < (ll)(b); ++i)
#define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)
#define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c))
#define rep(...) REP_SELECTER(__VA_ARGS__, REP4, REP3, REP2, REP1) (__VA_ARGS__)
#define RREP2(i, a) for (ll i = (ll)(a) - 1; i >= 0; --i)
#define RREP3(i, a, b) for (ll i = (ll)(a) - 1; i >= (ll)(b); --i)
#define RREP4(i, a, b, c) for (ll i = (ll)(a) - 1; i >= (ll)(b); i -= (ll)(c))
#define rrep(...) REP_SELECTER(__VA_ARGS__, RREP4, RREP3, RREP2) (__VA_ARGS__)
#define REPS2(i, b) for (ll i = 1; i <= (ll)(b); ++i)
#define REPS3(i, a, b) for (ll i = (ll)(a) + 1; i <= (ll)(b); ++i)
#define REPS4(i, a, b, c) for (ll i = (ll)(a) + 1; i <= (ll)(b); i += (ll)(c))
#define reps(...) REP_SELECTER(__VA_ARGS__, REPS4, REPS3, REPS2) (__VA_ARGS__)
#define RREPS2(i, a) for (ll i = (ll)(a); i > 0; --i)
#define RREPS3(i, a, b) for (ll i = (ll)(a); i > (ll)(b); --i)
#define RREPS4(i, a, b, c) for (ll i = (ll)(a); i > (ll)(b); i -= (ll)(c))
#define rreps(...) REP_SELECTER(__VA_ARGS__, RREPS4, RREPS3, RREPS2) (__VA_ARGS__)
#define each_for(...) for (auto&& __VA_ARGS__)
#define each_const(...) for (const auto& __VA_ARGS__)
#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#if __cplusplus >= 201402L
#define CONSTEXPR constexpr
#else
#define CONSTEXPR
#endif
#ifdef __cpp_if_constexpr
#define IF_CONSTEXPR constexpr
#else
#define IF_CONSTEXPR
#endif
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using PLL = std::pair<ll, ll>;
template<class T> using prique = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template<class T> class infinity {
public:
static constexpr T value = std::numeric_limits<T>::max() / 2;
static constexpr T mvalue = std::numeric_limits<T>::min() / 2;
static constexpr T max = std::numeric_limits<T>::max();
static constexpr T min = std::numeric_limits<T>::min();
};
#if __cplusplus <= 201402L
template<class T> constexpr T infinity<T>::value;
template<class T> constexpr T infinity<T>::mvalue;
template<class T> constexpr T infinity<T>::max;
template<class T> constexpr T infinity<T>::min;
#endif
#if __cplusplus >= 201402L
template<class T> constexpr T INF = infinity<T>::value;
#endif
constexpr ll inf = infinity<ll>::value;
constexpr ld EPS = 1e-8;
constexpr ld PI = 3.1415926535897932384626;
template<class T, class U> std::ostream& operator<<(std::ostream& ost, const std::pair<T, U>& p) {
return ost << p.first << ' ' << p.second;
}
template<class T, class U> std::istream& operator>>(std::istream& ist, std::pair<T, U>& p) {
return ist >> p.first >> p.second;
}
template<class Container,
typename std::enable_if<!std::is_same<Container, std::string>::value>::type* = nullptr>
auto operator<<(std::ostream& ost, const Container& cont)
-> decltype(cont.begin(), cont.end(), ost)
{
for (auto itr = cont.begin(); itr != cont.end(); ++itr) {
if (itr != cont.begin()) ost << ' ';
ost << *itr;
}
return ost;
}
template<class Container,
typename std::enable_if<!std::is_same<Container, std::string>::value>::type* = nullptr>
auto operator>>(std::istream& ist, Container& cont)
-> decltype(cont.begin(), cont.end(), ist)
{
for (auto itr = cont.begin(); itr != cont.end(); ++itr) ist >> *itr;
return ist;
}
template<class T, class U> inline constexpr bool chmin(T &a, const U &b) noexcept {
return a > b ? a = b, true : false;
}
template<class T, class U> inline constexpr bool chmax(T &a, const U &b) noexcept {
return a < b ? a = b, true : false;
}
inline CONSTEXPR ll gcd(ll a, ll b) noexcept {
while (b) {
const ll c = a;
a = b;
b = c % b;
}
return a;
}
inline CONSTEXPR ll lcm(ll a, ll b) noexcept {
return a / gcd(a, b) * b;
}
inline CONSTEXPR bool is_prime(ll N) noexcept {
if (N <= 1) return false;
for (ll i = 2; i * i <= N; ++i) {
if (N % i == 0) return false;
}
return true;
}
inline std::vector<ll> prime_factor(ll N) noexcept {
std::vector<ll> res;
for (ll i = 2; i * i <= N; ++i) {
while (N % i == 0) {
res.push_back(i);
N /= i;
}
}
if (N != 1) res.push_back(N);
return res;
}
inline CONSTEXPR ll my_pow(ll a, ll b) noexcept {
ll res = 1;
while (b) {
if (b & 1) res *= a;
b >>= 1;
a *= a;
}
return res;
}
inline CONSTEXPR ll mod_pow(ll a, ll b, ll mod) noexcept {
a %= mod;
ll res = 1;
while (b) {
if (b & 1) (res *= a) %= mod;
b >>= 1;
(a *= a) %= mod;
}
return res;
}
inline PLL extGCD(ll a, ll b) noexcept {
const ll n = a, m = b;
ll x = 1, y = 0, u = 0, v = 1;
ll t;
while (b) {
t = a / b;
std::swap(a -= t * b, b);
std::swap(x -= t * u, u);
std::swap(y -= t * v, v);
}
if (x < 0) {
x += m;
y -= n;
}
return {x, y};
}
inline ll mod_inv(ll a, ll mod) noexcept {
ll b = mod;
ll x = 1, u = 0;
ll t;
while (b) {
t = a / b;
std::swap(a -= t * b, b);
std::swap(x -= t * u, u);
}
if (x < 0) x += mod;
assert(a == 1);
return x;
}
inline PLL ChineseRemainder(ll b1, ll m1, ll b2, ll m2) noexcept {
const PLL p = extGCD(m1, m2);
const ll g = p.first * m1 + p.second * m2;
const ll l = m1 / g * m2;
if ((b2 - b1) % g != 0) return PLL{-1, -1};
const ll x = (b2 - b1) / g * p.first % (m2 / g);
return {(x * m1 + b1 + l) % l, l};
}
PLL ChineseRemainders(const std::vector<ll>& b, const std::vector<ll>& m) noexcept {
PLL res{0, 1};
rep (i, b.size()) {
res = ChineseRemainder(res.first, res.second, b[i], m[i]);
if (res.first == -1) return res;
}
return res;
}
template<class F> class RecLambda {
private:
F f;
public:
explicit constexpr RecLambda(F&& f_) : f(std::forward<F>(f_)) {}
template<class... Args> constexpr auto operator()(Args&&... args) const
-> decltype(f(*this, std::forward<Args>(args)...)) {
return f(*this, std::forward<Args>(args)...);
}
};
template<class F> inline constexpr RecLambda<F> rec_lambda(F&& f) {
return RecLambda<F>(std::forward<F>(f));
}
template<class Head, class... Tail> struct multi_dim_vector {
using type = std::vector<typename multi_dim_vector<Tail...>::type>;
};
template<class T> struct multi_dim_vector<T> {
using type = T;
};
template<class T, class Arg> constexpr std::vector<T> make_vec(int n, Arg&& arg) {
return std::vector<T>(n, std::forward<Arg>(arg));
}
template<class T, class... Args>
constexpr typename multi_dim_vector<Args..., T>::type make_vec(int n, Args&&... args) {
return typename multi_dim_vector<Args..., T>::type (n, make_vec<T>(std::forward<Args>(args)...));
}
inline CONSTEXPR int popcnt(ull x) {
#if __cplusplus >= 202002L
return std::popcount(x);
#endif
x = (x & 0x5555555555555555) + ((x >> 1 ) & 0x5555555555555555);
x = (x & 0x3333333333333333) + ((x >> 2 ) & 0x3333333333333333);
x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4 ) & 0x0f0f0f0f0f0f0f0f);
x = (x & 0x00ff00ff00ff00ff) + ((x >> 8 ) & 0x00ff00ff00ff00ff);
x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff);
return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff);
}
template<class T, class Comp = std::less<T>> class presser {
protected:
std::vector<T> dat;
Comp cmp;
bool sorted = false;
public:
presser() : presser(Comp()) {}
presser(const Comp& cmp) : cmp(cmp) {}
presser(const std::vector<T>& vec, const Comp& cmp = Comp()) : dat(vec), cmp(cmp) {}
presser(std::vector<T>&& vec, const Comp& cmp = Comp()) : dat(std::move(vec)), cmp(cmp) {}
presser(std::initializer_list<T> il, const Comp& cmp = Comp()) : dat(il.begin(), il.end()), cmp(cmp) {}
void reserve(int n) {
assert(!sorted);
dat.reserve(n);
}
void push_back(const T& v) {
assert(!sorted);
dat.push_back(v);
}
void push_back(T&& v) {
assert(!sorted);
dat.push_back(std::move(v));
}
void push(const std::vector<T>& vec) {
assert(!sorted);
const int n = dat.size();
dat.resize(n + vec.size());
rep (i, vec.size()) dat[n + i] = vec[i];
}
int build() {
assert(!sorted); sorted = true;
std::sort(all(dat), cmp);
dat.erase(std::unique(all(dat), [&](const T& a, const T& b) -> bool {
return !cmp(a, b) && !cmp(b, a);
}), dat.end());
return dat.size();
}
const T& operator[](int k) const& {
assert(sorted);
assert(0 <= k && k < (int)dat.size());
return dat[k];
}
T operator[](int k) && {
assert(sorted);
assert(0 <= k && k < (int)dat.size());
return std::move(dat[k]);
}
int get_index(const T& val) const {
assert(sorted);
return static_cast<int>(std::lower_bound(all(dat), val, cmp) - dat.begin());
}
std::vector<int> pressed(const std::vector<T>& vec) const {
assert(sorted);
std::vector<int> res(vec.size());
rep (i, vec.size()) res[i] = get_index(vec[i]);
return res;
}
void press(std::vector<T>& vec) const {
static_assert(std::is_integral<T>::value, "template argument must be convertible from int type");
assert(sorted);
each_for (i : vec) i = get_index(i);
}
int size() const {
assert(sorted);
return dat.size();
}
const std::vector<T>& data() const& { return dat; }
std::vector<T> data() && { return std::move(dat); }
};
#line 2 "library/graph/shortest-path/BreadthFirstSearch.hpp"
#line 2 "library/graph/Graph.hpp"
#line 4 "library/graph/Graph.hpp"
template<class T = int> struct edge {
int from, to;
T cost;
int idx;
edge() : from(-1), to(-1) {}
edge(int f, int t, const T& c = 1, int i = -1) : from(f), to(t), cost(c), idx(i) {}
edge(int f, int t, T&& c, int i = -1) : from(f), to(t), cost(std::move(c)), idx(i) {}
operator int() const { return to; }
friend bool operator<(const edge<T>& lhs, const edge<T>& rhs) {
return lhs.cost < rhs.cost;
}
friend bool operator>(const edge<T>& lhs, const edge<T>& rhs) {
return lhs.cost > rhs.cost;
}
};
template<class T = int> using Edges = std::vector<edge<T>>;
template<class T = int> using GMatrix = std::vector<std::vector<T>>;
template<class T = int> class Graph : public std::vector<std::vector<edge<T>>> {
private:
using Base = std::vector<std::vector<edge<T>>>;
public:
int edge_id = 0;
using Base::Base;
int edge_size() const { return edge_id; }
int add_edge(int a, int b, const T& c, bool is_directed = false) {
assert(0 <= a && a < (int)this->size());
assert(0 <= b && b < (int)this->size());
(*this)[a].emplace_back(a, b, c, edge_id);
if (!is_directed) (*this)[b].emplace_back(b, a, c, edge_id);
return edge_id++;
}
int add_edge(int a, int b, bool is_directed = false) {
assert(0 <= a && a < (int)this->size());
assert(0 <= b && b < (int)this->size());
(*this)[a].emplace_back(a, b, 1, edge_id);
if (!is_directed) (*this)[b].emplace_back(b, a, 1, edge_id);
return edge_id++;
}
};
template<class T> GMatrix<T> ListToMatrix(const Graph<T>& G) {
const int N = G.size();
auto res = make_vec<T>(N, N, infinity<T>::value);
rep (i, N) res[i][i] = 0;
rep (i, N) {
each_const (e : G[i]) res[i][e.to] = e.cost;
}
return res;
}
template<class T> Edges<T> UndirectedListToEdges(const Graph<T>& G) {
const int V = G.size();
const int E = G.edge_size();
Edges<T> Ed(E);
rep (i, V) {
each_const (e : G[i]) Ed[e.idx] = e;
}
return Ed;
}
template<class T> Edges<T> DirectedListToEdges(const Graph<T>& G) {
const int V = G.size();
const int E = std::accumulate(
all(G), 0,
[](int a, const std::vector<edge<T>>& v) -> int { return a + v.size(); }
);
Edges<T> Ed(G.edge_size()); Ed.reserve(E);
rep (i, V) {
each_const (e : G[i]) {
if (Ed[e.idx] == -1) Ed[e.idx] = e;
else Ed.push_back(e);
}
}
return Ed;
}
template<class T> Graph<T> ReverseGraph(const Graph<T>& G) {
const int V = G.size();
Graph<T> res(V);
rep (i, V) {
each_const (e : G[i]) {
res[e.to].emplace_back(e.to, e.from, e.cost, e.idx);
}
}
res.edge_id = G.edge_size();
return res;
}
struct unweighted_edge {
template<class... Args> unweighted_edge(const Args&...) {}
operator int() { return 1; }
};
using UnweightedGraph = Graph<unweighted_edge>;
/**
* @brief Graph-template
* @docs docs/Graph.md
*/
#line 5 "library/graph/shortest-path/BreadthFirstSearch.hpp"
template<class T> std::vector<T> BFS(const Graph<T>& G, int start = 0) {
assert(0 <= start && start < (int)G.size());
std::vector<T> dist(G.size(), -1); dist[start] = 0;
std::queue<int> que; que.push(start);
while (!que.empty()) {
int v = que.front(); que.pop();
each_const (e : G[v]) {
if (dist[e.to] == -1) {
dist[e.to] = dist[v] + e.cost;
que.push(e.to);
}
}
}
return dist;
}
template<class T> std::vector<T> BFSedge(const Graph<T>& G, int start = 0) {
assert(0 <= start && start < (int)G.size());
std::vector<T> dist(G.size(), -1); dist[start] = 0;
std::queue<int> que; que.push(start);
while (!que.empty()) {
int v = que.front(); que.pop();
each_const (e : G[v]) {
if (dist[e.to] == -1) {
dist[e.to] = dist[v] + 1;
que.push(e.to);
}
}
}
return dist;
}
/**
* @brief BFS(幅優先探索)
* @docs docs/BreadthFirstSearch.md
*/
#line 3 "main.cpp"
using namespace std;
constexpr int dx[] = {-1, 0, 1, 0};
constexpr int dy[] = {0, 1, 0, -1};
constexpr int infty = INF<int>;
int main() {
int N, W, H; cin >> N >> W >> H;
vector<string> G(H + 2);
G[0] = G[H + 1] = string(W + 2, 'x');
reps (i, H) {
cin >> G[i];
G[i] = 'x' + G[i] + 'x';
}
H += 2; W += 2;
auto nxt = make_vec<pair<int, int>>(H, W, 4, pair<int, int>{-1, -1});
rep (i, H) rep (j, W) {
if (G[i][j] != 'x') continue;
rep (k, 4) {
int ni = i + dx[k], nj = j + dy[k], nk = k;
while (0 <= ni && ni < H && 0 <= nj && nj < W && G[ni][nj] != 'x') {
nxt[ni][nj][nk ^ 2] = {i + dx[k], j + dy[k]};
if (G[ni][nj] == 'A') nk = (nk + 1) % 4;
if (G[ni][nj] == 'C') nk = (nk + 3) % 4;
ni += dx[nk]; nj += dy[nk];
}
}
}
auto dp = make_vec<int>(N, N, H, W, infty);
vector<PLL> S(N);
rep (i, H) rep (j, W) {
if ('1' <= G[i][j] && G[i][j] <= '9') S[G[i][j] - '1'] = {i, j};
}
rep (len, N) rep (i, N) {
ll j = i + len;
if (j >= N) break;
if (len == 0) {
dp[i][j][S[i].first][S[i].second] = 0;
}
else {
rep (x, H) rep (y, W) {
if (G[x][y] == 'x') continue;
rep (k, i, j) chmin(dp[i][j][x][y], dp[i][k][x][y] + dp[k + 1][j][x][y]);
}
}
vector<pair<int, pair<int, int>>> event;
rep (x, H) rep (y, W) {
if (dp[i][j][x][y] != infty) event.emplace_back(dp[i][j][x][y], PLL{x, y});
}
sort(all(event));
int idx = 0;
deque<pair<int, int>> que;
while (!que.empty() || idx < event.size()) {
if (que.empty()) {
que.push_back(event[idx].second);
idx++;
}
while (idx < event.size() && event[idx].first <= dp[i][j][que.front().first][que.front().second]) {
que.push_front(event[idx].second);
idx++;
}
auto [x, y] = que.front(); que.pop_front();
rep (k, 4) {
auto [nx, ny] = nxt[x][y][k];
if (nx == -1) continue;
if (chmin(dp[i][j][nx][ny], dp[i][j][x][y] + 1)) {
que.emplace_back(nx, ny);
}
}
}
}
ll ans = infty;
rep (i, H) rep (j, W) chmin(ans, dp[0][N - 1][i][j]);
cout << (ans == infty ? -1 : ans) << endl;
}
Compilation message
main.cpp: In function 'int main()':
main.cpp:57:36: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, std::pair<int, int> > >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
main.cpp:62:24: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, std::pair<int, int> > >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
212 KB |
Output is correct |
2 |
Correct |
0 ms |
212 KB |
Output is correct |
3 |
Correct |
0 ms |
212 KB |
Output is correct |
4 |
Correct |
0 ms |
212 KB |
Output is correct |
5 |
Correct |
0 ms |
212 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
212 KB |
Output is correct |
2 |
Correct |
0 ms |
212 KB |
Output is correct |
3 |
Correct |
0 ms |
212 KB |
Output is correct |
4 |
Correct |
0 ms |
212 KB |
Output is correct |
5 |
Correct |
0 ms |
212 KB |
Output is correct |
6 |
Correct |
0 ms |
212 KB |
Output is correct |
7 |
Correct |
0 ms |
212 KB |
Output is correct |
8 |
Correct |
0 ms |
212 KB |
Output is correct |
9 |
Correct |
0 ms |
212 KB |
Output is correct |
10 |
Correct |
0 ms |
212 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
212 KB |
Output is correct |
2 |
Correct |
0 ms |
212 KB |
Output is correct |
3 |
Correct |
0 ms |
212 KB |
Output is correct |
4 |
Correct |
0 ms |
212 KB |
Output is correct |
5 |
Correct |
0 ms |
212 KB |
Output is correct |
6 |
Correct |
0 ms |
212 KB |
Output is correct |
7 |
Correct |
0 ms |
212 KB |
Output is correct |
8 |
Correct |
0 ms |
212 KB |
Output is correct |
9 |
Correct |
0 ms |
212 KB |
Output is correct |
10 |
Correct |
0 ms |
212 KB |
Output is correct |
11 |
Correct |
103 ms |
39124 KB |
Output is correct |
12 |
Correct |
13 ms |
7508 KB |
Output is correct |
13 |
Correct |
38 ms |
27348 KB |
Output is correct |
14 |
Correct |
257 ms |
39128 KB |
Output is correct |
15 |
Correct |
65 ms |
39116 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
212 KB |
Output is correct |
2 |
Correct |
0 ms |
212 KB |
Output is correct |
3 |
Correct |
0 ms |
212 KB |
Output is correct |
4 |
Correct |
0 ms |
212 KB |
Output is correct |
5 |
Correct |
0 ms |
212 KB |
Output is correct |
6 |
Correct |
0 ms |
212 KB |
Output is correct |
7 |
Correct |
0 ms |
212 KB |
Output is correct |
8 |
Correct |
0 ms |
212 KB |
Output is correct |
9 |
Correct |
0 ms |
212 KB |
Output is correct |
10 |
Correct |
0 ms |
212 KB |
Output is correct |
11 |
Correct |
103 ms |
39124 KB |
Output is correct |
12 |
Correct |
13 ms |
7508 KB |
Output is correct |
13 |
Correct |
38 ms |
27348 KB |
Output is correct |
14 |
Correct |
257 ms |
39128 KB |
Output is correct |
15 |
Correct |
65 ms |
39116 KB |
Output is correct |
16 |
Correct |
182 ms |
109004 KB |
Output is correct |
17 |
Correct |
808 ms |
108104 KB |
Output is correct |
18 |
Correct |
175 ms |
108140 KB |
Output is correct |
19 |
Correct |
139 ms |
108976 KB |
Output is correct |
20 |
Correct |
482 ms |
108180 KB |
Output is correct |