Submission #560458

# Submission time Handle Problem Language Result Execution time Memory
560458 2022-05-11T13:11:48 Z kartel Distributing Candies (IOI21_candies) C++17
38 / 100
540 ms 57564 KB
#include <bits/stdc++.h>

//#include "grader.cpp"
#include "candies.h"

#define F first
#define S second
#define pb push_back
#define sz(x) (int)x.size()
#define el "\n"
#define all(x) (x).begin(), (x).end()

//#pragma GCC optimize("unroll-loops")
//#pragma GCC optimize("-O3")
//#pragma GCC optimize("Ofast")

using namespace std;
typedef long long ll;

struct st_beats {
    struct node {
        ll mx, mn;
        ll D, Dx;

        node() {
            mx = mn = D = 0;
            Dx = -2e9;
        }

        node operator +(node other) {
            node ret;

            ret.mx = max(mx, other.mx);
            ret.mn = min(mn, other.mn);
            return ret;
        }

        void mrg(node &a, node &b) {
            node x = a + b;
            mx = x.mx; mn = x.mn;
        }

        void add() {
            mx += D; mn += D;
        }

        void updL() {
            mx = mn = Dx;
            Dx = -2e9;
        }
    };

    vector <node> t;
    int n, h;

    st_beats() {}

    void init(int _n, int _h) {
        t.resize(8 * _n);
        for (int i = 0; i < sz(t); i++) {
            t[i] = node();
        }
        h = _h;
        n = _n;
    }

    void push(int v) {
        if (t[v].D) {
            t[v].add();
            t[v * 2].D += t[v].D;
            t[v * 2 + 1].D += t[v].D;
            t[v].D = 0;
        }
    }

    void pushL(int v) {
        if (t[v].Dx != -2e9) {
            t[v * 2].Dx = t[v].Dx;
            t[v * 2 + 1].Dx = t[v].Dx;
            t[v * 2].D = t[v * 2 + 1].D = 0;

            t[v].updL();
        }
    }

    void psh(int v) {
        pushL(v);
        push(v);
    }

    void upd(int v, int l, int r, int tl, int tr, int val) {
        psh(v);
        if (l > r || tl > tr || tl > r || l > tr) {
            return;
        }
        int md = (l + r) >> 1;
        if (l >= tl && r <= tr) {
            t[v].D += val;
            psh(v);
            return;
        }
        upd(v * 2, l, md, tl, tr, val);
        upd(v * 2 + 1, md + 1, r, tl, tr, val);
        t[v].mrg(t[v * 2], t[v * 2 + 1]);
    }

    void upd(int v, int l, int r, int x) {
        psh(v);

        if (t[v].mn > h) {
            t[v].Dx = h;
            psh(v);
            return;
        }
        if (t[v].mx < 0) {
            t[v].Dx = 0;
            psh(v);
            return;
        }

        if (l == r || (t[v].mn >= 0 && t[v].mx <= h)) {
            return;
        }

        int md = (l + r) >> 1;
        upd(v * 2, l, md, 0);
        upd(v * 2 + 1, md + 1, r, 0);
        t[v].mrg(t[v * 2], t[v * 2 + 1]);
    }

    void upd(int l, int r, int val) {
        upd(1, 0, n - 1, l, r, val);

        upd(1, 0, n - 1, 0);
    }

    int get(int v, int l, int r, int ps) {
        psh(v);
        if (l == r) {
            return t[v].mx;
        } else {
            int md = (l + r) >> 1;
            if (ps <= md) {
                return get(v * 2, l, md, ps);
            }
            return get(v * 2 + 1, md + 1, r, ps);
        }
    }

    int get(int x) {
        return get(1, 0, n - 1, x);
    }
} stb;

struct st_min {
    vector <ll> t;
    int n;

    st_min() {}

    void build(int v, int l, int r, vector <ll> &a) {
        if (l == r) {
            t[v] = abs(a[l]);
            return;
        } else {
            int md = (l + r) >> 1;
            build(v * 2, l, md, a);
            build(v * 2 + 1, md + 1, r, a);
            t[v] = min(t[v * 2], t[v * 2 + 1]);
        }
    }

    void init(vector <ll> &a) {
        n = sz(a);
        t.resize(8 * n);
        build(1, 0, n - 1, a);
    }

    void upd(int v, int l, int r, int ps, ll val) {
        if (l == r) {
            t[v] = val;
            return;
        } else {
            int md = (l + r) >> 1;
            if (ps <= md) {
                upd(v * 2, l, md, ps, val);
            } else {
                upd(v * 2 + 1, md + 1, r, ps, val);
            }
            t[v] = min(t[v * 2], t[v * 2 + 1]);
        }
    }

    int get(int v, int l, int r, ll c) {
        if (t[v] >= c) {
            return -1;
        }
        if (l == r) {
            return l;
        }
        int md = (l + r) >> 1;
        int cur = get(v * 2, l, md, c);
        if (cur == -1) {
            return get(v * 2 + 1, md + 1, r, c);
        }
        return cur;
    }

    void upd(int ps, ll val) {
        upd(1, 0, n - 1, ps, val);
    }

    int get(ll c) {
        return get(1, 0, n - 1, c);
    }
};

vector <int> solve_st_beats(vector <int> &c, vector <int> &l, vector <int> &r, vector <int> &v) {
    int n = sz(c), q = sz(l);

    stb.init(n, c[0]);
    for (int i = 0; i < q; i++) {
        stb.upd(l[i], r[i], v[i]);
    }

    vector <int> a(n);
    for (int i = 0; i < n; i++) {
        a[i] = stb.get(i);
    }

    return a;
}

vector <int> solve_offline(vector <int> &c, vector <int> &l, vector <int> &r, vector <int> &v) {
    vector <ll> p = {v[0]};
    int q = sz(l), n = sz(c);
    vector <int> nxt(q, 0);
    set <pair <int, ll> > se;

    auto sg = [&](ll x) {
        if (x < 0) {
            return -1;
        }
        return 1;
    };

    for (int i = 1; i < q; i++) {
        if (sg(p.back()) == sg(v[i])) {
            p.back() += v[i];
        } else {
            p.pb(v[i]);
        }
    }
    if (p[0] < 0) {
        p.erase(p.begin());
    }
    q = sz(p);
    for (int i = 0; i < q; i++) {
        nxt[i] = i + 1;
        se.insert({i, p[i]});
    }

    vector <int> ind(n, 0);
    iota(all(ind), 0);
    sort(all(ind), [&](int i, int j) {return (c[i] < c[j]);});

    st_min tM;
    tM.init(p);

    vector <int> ans(n, 0);
    for (auto i : ind) {
        ll x = c[i];
//        cerr << x << el;
        int j = tM.get(x);
        while (j != -1) {
            ll new_val = p[j], shift = 0;
            if (new_val < 0) {
                shift = x;
            }
            int was = j;
            se.erase({j, p[j]});
            vector <int> pos;
            while (nxt[j] < q && shift + new_val >= 0 && shift + new_val <= x) {
                j = nxt[j];
                pos.pb(j);
                se.erase({j, p[j]});
                new_val += p[j];
                p[j] = 0;
            }
            for (auto k : pos) {
                nxt[k] = nxt[j];
                tM.upd(k, 2e18);
            }
            nxt[was] = nxt[j];
            auto it = se.lower_bound(make_pair(j, 0));
            if (it != se.begin()) {
                --it;
                if (sg(it -> S) == sg(new_val)) {
                    new_val += it -> S;
                    nxt[it -> F] = nxt[j];
                    p[was] = 0;
                    p[it -> F] = new_val;
                    tM.upd(was, 2e18);
                    tM.upd(it -> F, abs(new_val));
                    was = it -> F;

                    se.erase(it);
                    se.insert({was, new_val});
                } else {
                    p[was] = new_val;
                    se.insert({was, new_val});
                    tM.upd(was, abs(new_val));
                }
            } else {
                p[was] = new_val;
                se.insert({was, new_val});
                tM.upd(was, abs(new_val));
            }
            if (nxt[j] == q) {
                break;
            }
            j = tM.get(x);
        }
        ll val = se.rbegin() -> S;
        if (val < 0) {
            if (se.rbegin() -> F) {
                ans[i] = max(0ll, x + val);
            } else {
                ans[i] = 0;
            }
        } else {
            ans[i] = min(x, val);
        }
//        for (int j = 0; j < q; j++) {
//            cerr << p[j] << " ";
//        }
//        cerr << el;
    }

    return ans;
}

vector <int> distribute_candies(vector <int> c, vector <int> l, vector <int> r, vector <int> v) {
    int n = sz(c), q = sz(l);

    if (n <= 2000 && q <= 2000) {
        vector <int> a(n, 0);

        for (int i = 0; i < q; i++) {
            for (int j = l[i]; j <= r[i]; j++) {
                a[j] += v[i];

                a[j] = max(a[j], 0);
                a[j] = min(a[j], c[j]);
            }
        }
        return a;
    } else {
        bool g = 1;
        for (int i = 0; i < q; i++) {
            g &= (v[i] > 0);
        }

        if (g) {
            vector <ll> pf(n, 0);
            vector <int> a(n, 0);

            for (int i = 0; i < q; i++) {
                pf[l[i]] += v[i];
                if (r[i] + 1 < n) {
                    pf[r[i] + 1] -= v[i];
                }
            }

            for (int i = 1; i < n; i++) {
                pf[i] += pf[i - 1];
            }
            for (int i = 0; i < n; i++) {
                a[i] = min(max(0ll, pf[i]), (ll)c[i]);
            }

            return a;
        } else {
            bool eq_c = 1;

            for (int i = 1; i < n; i++) {
                eq_c &= (c[i] == c[0]);
            }

            if (eq_c) {
                return solve_st_beats(c, l, r, v);
            }
            return solve_offline(c, l, r, v);
        }
    }
}

/*

10
99 5 25 85 6 20 41 83 87 87
10
0 9 -17
0 9 21
0 9 31
0 9 -25
0 9 -18
0 9 50
0 9 -41
0 9 -43
0 9 14
0 9 -25
63 0 14 49 0 9 30 47 51 51
0 0 0 0 0 0 0 0 0 0

10
75 24 49 95 80 40 28 41 85 57
10
0 9 -48
0 9 -15
0 9 20
0 9 44
0 9 43
0 9 39
0 9 -49
0 9 -16
0 9 -36
0 9 45
45 24 45 45 45 40 28 41 45 45

10
82 85 7 36 68 4 90 93 32 14
10
0 9 16
0 9 -6
0 9 47
0 9 3
0 9 -36
0 9 6
0 9 41
0 9 -27
0 9 -24
0 9 -12
8 8 0 0 5 0 8 8 0 0

10
55 26 63 57 58 10 89 91 45 72
10
0 9 90
0 9 -37
0 9 87
0 9 35
0 9 26
0 9 -52
0 9 -30
0 9 77
0 9 -87
0 9 45
45 26 45 45 45 10 45 45 45 45
*/
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 2 ms 340 KB Output is correct
5 Correct 4 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 103 ms 8808 KB Output is correct
2 Correct 95 ms 8936 KB Output is correct
3 Correct 93 ms 8804 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 165 ms 5524 KB Output is correct
3 Correct 90 ms 53928 KB Output is correct
4 Correct 433 ms 57388 KB Output is correct
5 Correct 423 ms 57564 KB Output is correct
6 Correct 540 ms 57448 KB Output is correct
7 Correct 433 ms 57440 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Incorrect 153 ms 19060 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 2 ms 340 KB Output is correct
5 Correct 4 ms 340 KB Output is correct
6 Correct 103 ms 8808 KB Output is correct
7 Correct 95 ms 8936 KB Output is correct
8 Correct 93 ms 8804 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 165 ms 5524 KB Output is correct
11 Correct 90 ms 53928 KB Output is correct
12 Correct 433 ms 57388 KB Output is correct
13 Correct 423 ms 57564 KB Output is correct
14 Correct 540 ms 57448 KB Output is correct
15 Correct 433 ms 57440 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Incorrect 153 ms 19060 KB Output isn't correct
19 Halted 0 ms 0 KB -