Submission #560373

# Submission time Handle Problem Language Result Execution time Memory
560373 2022-05-11T10:32:14 Z kartel Distributing Candies (IOI21_candies) C++17
38 / 100
506 ms 57572 KB
#include <bits/stdc++.h>

//#include "grader.cpp"
#include "candies.h"

#define F first
#define S second
#define pb push_back
#define sz(x) (int)x.size()
#define el "\n"
#define all(x) (x).begin(), (x).end()

#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-O3")
#pragma GCC optimize("Ofast")

using namespace std;
typedef long long ll;

struct st_beats {
    struct node {
        ll mx, mn;
        ll D, Dx;

        node() {
            mx = mn = D = 0;
            Dx = -2e9;
        }

        node operator +(node other) {
            node ret;

            ret.mx = max(mx, other.mx);
            ret.mn = min(mn, other.mn);
            return ret;
        }

        void mrg(node &a, node &b) {
            node x = a + b;
            mx = x.mx; mn = x.mn;
        }

        void add() {
            mx += D; mn += D;
        }

        void updL() {
            mx = mn = Dx;
            Dx = -2e9;
        }
    };

    vector <node> t;
    int n, h;

    st_beats() {}

    void init(int _n, int _h) {
        t.resize(8 * _n);
        for (int i = 0; i < sz(t); i++) {
            t[i] = node();
        }
        h = _h;
        n = _n;
    }

    void push(int v) {
        if (t[v].D) {
            t[v].add();
            t[v * 2].D += t[v].D;
            t[v * 2 + 1].D += t[v].D;
            t[v].D = 0;
        }
    }

    void pushL(int v) {
        if (t[v].Dx != -2e9) {
            t[v * 2].Dx = t[v].Dx;
            t[v * 2 + 1].Dx = t[v].Dx;
            t[v * 2].D = t[v * 2 + 1].D = 0;

            t[v].updL();
        }
    }

    void psh(int v) {
        pushL(v);
        push(v);
    }

    void upd(int v, int l, int r, int tl, int tr, int val) {
        psh(v);
        if (l > r || tl > tr || tl > r || l > tr) {
            return;
        }
        int md = (l + r) >> 1;
        if (l >= tl && r <= tr) {
            t[v].D += val;
            psh(v);
            return;
        }
        upd(v * 2, l, md, tl, tr, val);
        upd(v * 2 + 1, md + 1, r, tl, tr, val);
        t[v].mrg(t[v * 2], t[v * 2 + 1]);
    }

    void upd(int v, int l, int r, int x) {
        psh(v);

        if (t[v].mn > h) {
            t[v].Dx = h;
            psh(v);
            return;
        }
        if (t[v].mx < 0) {
            t[v].Dx = 0;
            psh(v);
            return;
        }

        if (l == r || (t[v].mn >= 0 && t[v].mx <= h)) {
            return;
        }

        int md = (l + r) >> 1;
        upd(v * 2, l, md, 0);
        upd(v * 2 + 1, md + 1, r, 0);
        t[v].mrg(t[v * 2], t[v * 2 + 1]);
    }

    void upd(int l, int r, int val) {
        upd(1, 0, n - 1, l, r, val);

        upd(1, 0, n - 1, 0);
    }

    int get(int v, int l, int r, int ps) {
        psh(v);
        if (l == r) {
            return t[v].mx;
        } else {
            int md = (l + r) >> 1;
            if (ps <= md) {
                return get(v * 2, l, md, ps);
            }
            return get(v * 2 + 1, md + 1, r, ps);
        }
    }

    int get(int x) {
        return get(1, 0, n - 1, x);
    }
} stb;

struct st_min {
    vector <ll> t;
    int n;

    st_min() {}

    void build(int v, int l, int r, vector <ll> &a) {
        if (l == r) {
            t[v] = abs(a[l]);
            return;
        } else {
            int md = (l + r) >> 1;
            build(v * 2, l, md, a);
            build(v * 2 + 1, md + 1, r, a);
            t[v] = min(t[v * 2], t[v * 2 + 1]);
        }
    }

    void init(vector <ll> &a) {
        n = sz(a);
        t.resize(8 * n);
        build(1, 0, n - 1, a);
    }

    void upd(int v, int l, int r, int ps, ll val) {
        if (l == r) {
            t[v] = val;
            return;
        } else {
            int md = (l + r) >> 1;
            if (ps <= md) {
                upd(v * 2, l, md, ps, val);
            } else {
                upd(v * 2 + 1, md + 1, r, ps, val);
            }
            t[v] = min(t[v * 2], t[v * 2 + 1]);
        }
    }

    int get(int v, int l, int r, ll c) {
        if (t[v] > c) {
            return -1;
        }
        if (l == r) {
            return l;
        }
        int md = (l + r) >> 1;
        int cur = get(v * 2, l, md, c);
        if (cur == -1) {
            return get(v * 2 + 1, md + 1, r, c);
        }
        return cur;
    }

    void upd(int ps, ll val) {
        upd(1, 0, n - 1, ps, val);
    }

    int get(ll c) {
        return get(1, 0, n - 1, c);
    }
};

vector <int> solve_st_beats(vector <int> &c, vector <int> &l, vector <int> &r, vector <int> &v) {
    int n = sz(c), q = sz(l);

    stb.init(n, c[0]);
    for (int i = 0; i < q; i++) {
        stb.upd(l[i], r[i], v[i]);
    }

    vector <int> a(n);
    for (int i = 0; i < n; i++) {
        a[i] = stb.get(i);
    }

    return a;
}

vector <int> solve_offline(vector <int> &c, vector <int> &l, vector <int> &r, vector <int> &v) {
    vector <ll> p = {v[0]};
    int q = sz(l), n = sz(c);
    vector <int> nxt(q, 0);
    set <pair <int, ll> > se;

    auto sg = [&](ll x) {
        if (x < 0) {
            return -1;
        }
        return 1;
    };

    for (int i = 1; i < q; i++) {
        if (sg(p.back()) == sg(v[i])) {
            p.back() += v[i];
        } else {
            p.pb(v[i]);
        }
    }
    if (p[0] < 0) {
        p.erase(p.begin());
    }
    q = sz(p);
    for (int i = 0; i < q; i++) {
        nxt[i] = i + 1;
        se.insert({i, p[i]});
    }

    vector <int> ind(n, 0);
    iota(all(ind), 0);
    sort(all(ind), [&](int i, int j) {return (c[i] < c[j]);});

    st_min tM;
    tM.init(p);

    vector <int> ans(n, 0);
    for (auto i : ind) {
        ll x = c[i];
//        cerr << x << el;
        int j = tM.get(x);
        while (j != -1) {
            ll new_val = p[j], shift = 0;
            if (new_val < 0) {
                shift = x;
            }
            int was = j;
            se.erase({j, p[j]});
            vector <int> pos;
            while (nxt[j] < q && shift + new_val >= 0 && shift + new_val <= x) {
                j = nxt[j];
                pos.pb(j);
                se.erase({j, p[j]});
                new_val += p[j];
            }
            for (auto k : pos) {
                nxt[k] = nxt[j];
                tM.upd(k, 2e18);
            }
            nxt[was] = nxt[j];
            p[was] = new_val;
            se.insert({was, new_val});
            tM.upd(was, abs(new_val));
            if (nxt[j] == q) {
                break;
            }
            j = tM.get(x);
        }
        ll val = se.rbegin() -> S;
        if (val < 0) {
            ans[i] = max(0ll, x + val);
        } else {
            ans[i] = min(x, val);
        }
    }

    return ans;
}

vector <int> distribute_candies(vector <int> c, vector <int> l, vector <int> r, vector <int> v) {
    int n = sz(c), q = sz(l);

    if (n <= 2000 && q <= 2000) {
        vector <int> a(n, 0);

        for (int i = 0; i < q; i++) {
            for (int j = l[i]; j <= r[i]; j++) {
                a[j] += v[i];

                a[j] = max(a[j], 0);
                a[j] = min(a[j], c[j]);
            }
        }
        return a;
    } else {
        bool g = 1;
        for (int i = 0; i < q; i++) {
            g &= (v[i] > 0);
        }

        if (g) {
            vector <ll> pf(n, 0);
            vector <int> a(n, 0);

            for (int i = 0; i < q; i++) {
                pf[l[i]] += v[i];
                if (r[i] + 1 < n) {
                    pf[r[i] + 1] -= v[i];
                }
            }

            for (int i = 1; i < n; i++) {
                pf[i] += pf[i - 1];
            }
            for (int i = 0; i < n; i++) {
                a[i] = min(max(0ll, pf[i]), (ll)c[i]);
            }

            return a;
        } else {
            bool eq_c = 1;

            for (int i = 1; i < n; i++) {
                eq_c &= (c[i] == c[0]);
            }

            if (eq_c) {
                return solve_st_beats(c, l, r, v);
            }
            return solve_offline(c, l, r, v);
        }
    }
}

/*
10
88 49 94 26 31 20 35 61 24 33
10
0 9 79
0 9 83
0 9 26
0 9 11
0 9 63
0 9 13
0 9 9
0 9 94
0 9 50
0 9 84
88 49 94 26 31 20 35 61 24 33

10
94 64 84 2 39 19 82 24 28 0

10
0 9 19
0 9 90
0 9 80
0 9 5
0 9 31
0 9 95
0 9 53
0 9 20
0 9 84
0 9 31
94 64 84 2 39 19 82 24 28 0

*/
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 5 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 100 ms 8900 KB Output is correct
2 Correct 107 ms 8908 KB Output is correct
3 Correct 102 ms 8812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 120 ms 5464 KB Output is correct
3 Correct 93 ms 53832 KB Output is correct
4 Correct 380 ms 57440 KB Output is correct
5 Correct 410 ms 57440 KB Output is correct
6 Correct 506 ms 57572 KB Output is correct
7 Correct 427 ms 57552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Incorrect 198 ms 19064 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 5 ms 340 KB Output is correct
6 Correct 100 ms 8900 KB Output is correct
7 Correct 107 ms 8908 KB Output is correct
8 Correct 102 ms 8812 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 120 ms 5464 KB Output is correct
11 Correct 93 ms 53832 KB Output is correct
12 Correct 380 ms 57440 KB Output is correct
13 Correct 410 ms 57440 KB Output is correct
14 Correct 506 ms 57572 KB Output is correct
15 Correct 427 ms 57552 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Incorrect 198 ms 19064 KB Output isn't correct
19 Halted 0 ms 0 KB -