Submission #560369

# Submission time Handle Problem Language Result Execution time Memory
560369 2022-05-11T10:29:11 Z kartel Distributing Candies (IOI21_candies) C++17
38 / 100
5000 ms 57548 KB
#include <bits/stdc++.h>

//#include "grader.cpp"
#include "candies.h"

#define F first
#define S second
#define pb push_back
#define sz(x) (int)x.size()
#define el "\n"
#define all(x) (x).begin(), (x).end()

#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-O3")
#pragma GCC optimize("Ofast")

using namespace std;
typedef long long ll;

struct st_beats {
    struct node {
        ll mx, mn;
        ll D, Dx;

        node() {
            mx = mn = D = 0;
            Dx = -2e9;
        }

        node operator +(node other) {
            node ret;

            ret.mx = max(mx, other.mx);
            ret.mn = min(mn, other.mn);
            return ret;
        }

        void mrg(node &a, node &b) {
            node x = a + b;
            mx = x.mx; mn = x.mn;
        }

        void add() {
            mx += D; mn += D;
        }

        void updL() {
            mx = mn = Dx;
            Dx = -2e9;
        }
    };

    vector <node> t;
    int n, h;

    st_beats() {}

    void init(int _n, int _h) {
        t.resize(8 * _n);
        for (int i = 0; i < sz(t); i++) {
            t[i] = node();
        }
        h = _h;
        n = _n;
    }

    void push(int v) {
        if (t[v].D) {
            t[v].add();
            t[v * 2].D += t[v].D;
            t[v * 2 + 1].D += t[v].D;
            t[v].D = 0;
        }
    }

    void pushL(int v) {
        if (t[v].Dx != -2e9) {
            t[v * 2].Dx = t[v].Dx;
            t[v * 2 + 1].Dx = t[v].Dx;
            t[v * 2].D = t[v * 2 + 1].D = 0;

            t[v].updL();
        }
    }

    void psh(int v) {
        pushL(v);
        push(v);
    }

    void upd(int v, int l, int r, int tl, int tr, int val) {
        psh(v);
        if (l > r || tl > tr || tl > r || l > tr) {
            return;
        }
        int md = (l + r) >> 1;
        if (l >= tl && r <= tr) {
            t[v].D += val;
            psh(v);
            return;
        }
        upd(v * 2, l, md, tl, tr, val);
        upd(v * 2 + 1, md + 1, r, tl, tr, val);
        t[v].mrg(t[v * 2], t[v * 2 + 1]);
    }

    void upd(int v, int l, int r, int x) {
        psh(v);

        if (t[v].mn > h) {
            t[v].Dx = h;
            psh(v);
            return;
        }
        if (t[v].mx < 0) {
            t[v].Dx = 0;
            psh(v);
            return;
        }

        if (l == r || (t[v].mn >= 0 && t[v].mx <= h)) {
            return;
        }

        int md = (l + r) >> 1;
        upd(v * 2, l, md, 0);
        upd(v * 2 + 1, md + 1, r, 0);
        t[v].mrg(t[v * 2], t[v * 2 + 1]);
    }

    void upd(int l, int r, int val) {
        upd(1, 0, n - 1, l, r, val);

        upd(1, 0, n - 1, 0);
    }

    int get(int v, int l, int r, int ps) {
        psh(v);
        if (l == r) {
            return t[v].mx;
        } else {
            int md = (l + r) >> 1;
            if (ps <= md) {
                return get(v * 2, l, md, ps);
            }
            return get(v * 2 + 1, md + 1, r, ps);
        }
    }

    int get(int x) {
        return get(1, 0, n - 1, x);
    }
} stb;

struct st_min {
    vector <ll> t;
    int n;

    st_min() {}

    void build(int v, int l, int r, vector <ll> &a) {
        if (l == r) {
            t[v] = abs(a[l]);
            return;
        } else {
            int md = (l + r) >> 1;
            build(v * 2, l, md, a);
            build(v * 2 + 1, md + 1, r, a);
            t[v] = min(t[v * 2], t[v * 2 + 1]);
        }
    }

    void init(vector <ll> &a) {
        n = sz(a);
        t.resize(8 * n);
        build(1, 0, n - 1, a);
    }

    void upd(int v, int l, int r, int ps, ll val) {
        if (l == r) {
            t[v] = val;
            return;
        } else {
            int md = (l + r) >> 1;
            if (ps <= md) {
                upd(v * 2, l, md, ps, val);
            } else {
                upd(v * 2 + 1, md + 1, r, ps, val);
            }
            t[v] = min(t[v * 2], t[v * 2 + 1]);
        }
    }

    int get(int v, int l, int r, ll c) {
        if (t[v] > c) {
            return -1;
        }
        if (l == r) {
            return l;
        }
        int md = (l + r) >> 1;
        int cur = get(v * 2, l, md, c);
        if (cur == -1) {
            return get(v * 2 + 1, md + 1, r, c);
        }
        return cur;
    }

    void upd(int ps, ll val) {
        upd(1, 0, n - 1, ps, val);
    }

    int get(ll c) {
        return get(1, 0, n - 1, c);
    }
};

vector <int> solve_st_beats(vector <int> &c, vector <int> &l, vector <int> &r, vector <int> &v) {
    int n = sz(c), q = sz(l);

    stb.init(n, c[0]);
    for (int i = 0; i < q; i++) {
        stb.upd(l[i], r[i], v[i]);
    }

    vector <int> a(n);
    for (int i = 0; i < n; i++) {
        a[i] = stb.get(i);
    }

    return a;
}

vector <int> solve_offline(vector <int> &c, vector <int> &l, vector <int> &r, vector <int> &v) {
    vector <ll> p = {v[0]};
    int q = sz(l), n = sz(c);
    vector <int> nxt(q, 0);
    set <pair <int, ll> > se;

    auto sg = [&](ll x) {
        if (x < 0) {
            return -1;
        }
        return 1;
    };

    for (int i = 1; i < q; i++) {
        if (sg(p.back()) == sg(v[i])) {
            p.back() += v[i];
        } else {
            p.pb(v[i]);
        }
    }
    if (p[0] < 0) {
        p.erase(p.begin());
    }
    q = sz(p);
    for (int i = 0; i < q; i++) {
        nxt[i] = i + 1;
        se.insert({i, p[i]});
    }

    vector <int> ind(n, 0);
    iota(all(ind), 0);
    sort(all(ind), [&](int i, int j) {return (c[i] < c[j]);});

    st_min tM;
    tM.init(p);

    vector <int> ans(n, 0);
    for (auto i : ind) {
        ll x = c[i];
//        cerr << x << el;
        int j = tM.get(x);
        while (j != -1) {
            ll new_val = p[j], shift = 0;
            if (new_val < 0) {
                shift = x;
            }
            int was = j;
            se.erase({j, p[j]});
            vector <int> pos;
            while (nxt[j] < q && shift + new_val >= 0 && shift + new_val <= x) {
                j = nxt[j];
                pos.pb(j);
                se.erase({j, p[j]});
                new_val += p[j];
            }
            for (auto k : pos) {
                nxt[k] = j;
                tM.upd(k, 2e18);
            }
            if (was != j) {
                nxt[was] = j;
            }
            p[was] = new_val;
            se.insert({was, new_val});
            tM.upd(was, abs(new_val));
            if (nxt[j] == q) {
                break;
            }
            j = tM.get(x);
        }
        ll val = se.rbegin() -> S;
        if (val < 0) {
            ans[i] = max(0ll, x + val);
        } else {
            ans[i] = min(x, val);
        }
    }

    return ans;
}

vector <int> distribute_candies(vector <int> c, vector <int> l, vector <int> r, vector <int> v) {
    int n = sz(c), q = sz(l);

    if (n <= 2000 && q <= 2000) {
        vector <int> a(n, 0);

        for (int i = 0; i < q; i++) {
            for (int j = l[i]; j <= r[i]; j++) {
                a[j] += v[i];

                a[j] = max(a[j], 0);
                a[j] = min(a[j], c[j]);
            }
        }
        return a;
    } else {
        bool g = 1;
        for (int i = 0; i < q; i++) {
            g &= (v[i] > 0);
        }

        if (g) {
            vector <ll> pf(n, 0);
            vector <int> a(n, 0);

            for (int i = 0; i < q; i++) {
                pf[l[i]] += v[i];
                if (r[i] + 1 < n) {
                    pf[r[i] + 1] -= v[i];
                }
            }

            for (int i = 1; i < n; i++) {
                pf[i] += pf[i - 1];
            }
            for (int i = 0; i < n; i++) {
                a[i] = min(max(0ll, pf[i]), (ll)c[i]);
            }

            return a;
        } else {
            bool eq_c = 1;

            for (int i = 1; i < n; i++) {
                eq_c &= (c[i] == c[0]);
            }

            if (eq_c) {
                return solve_st_beats(c, l, r, v);
            }
            return solve_offline(c, l, r, v);
        }
    }
}

/*
10
88 49 94 26 31 20 35 61 24 33
10
0 9 79
0 9 83
0 9 26
0 9 11
0 9 63
0 9 13
0 9 9
0 9 94
0 9 50
0 9 84
88 49 94 26 31 20 35 61 24 33

10
94 64 84 2 39 19 82 24 28 0

10
0 9 19
0 9 90
0 9 80
0 9 5
0 9 31
0 9 95
0 9 53
0 9 20
0 9 84
0 9 31
94 64 84 2 39 19 82 24 28 0

*/
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 5 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 100 ms 8800 KB Output is correct
2 Correct 103 ms 8888 KB Output is correct
3 Correct 97 ms 8800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 125 ms 5520 KB Output is correct
3 Correct 91 ms 53888 KB Output is correct
4 Correct 350 ms 57548 KB Output is correct
5 Correct 445 ms 57440 KB Output is correct
6 Correct 503 ms 57440 KB Output is correct
7 Correct 463 ms 57464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Execution timed out 5079 ms 19072 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 5 ms 340 KB Output is correct
6 Correct 100 ms 8800 KB Output is correct
7 Correct 103 ms 8888 KB Output is correct
8 Correct 97 ms 8800 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 125 ms 5520 KB Output is correct
11 Correct 91 ms 53888 KB Output is correct
12 Correct 350 ms 57548 KB Output is correct
13 Correct 445 ms 57440 KB Output is correct
14 Correct 503 ms 57440 KB Output is correct
15 Correct 463 ms 57464 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Execution timed out 5079 ms 19072 KB Time limit exceeded
19 Halted 0 ms 0 KB -