Submission #552844

# Submission time Handle Problem Language Result Execution time Memory
552844 2022-04-24T07:07:41 Z Stickfish Chess Rush (CEOI20_chessrush) C++17
51 / 100
685 ms 27300 KB
#include <iostream>
#include "arithmetics.h"
#include <vector>
#include <cassert>
using namespace std;
using ll = long long;

pair<int, int> pawn(int r, int c, int j0, int j1) {
    if (j0 == j1)
        return {r - 1, 1};
    else
        return {0, 0};
}

pair<int, int> rook(int r, int c, int j0, int j1) {
    if (j0 == j1)
        return {1, 1};
    else
        return {2, 2};
}

struct point {
    ll x, y;

    point(){}

    point(ll x_, ll y_): x(x_), y(y_) {}

    point operator/(ll t) const {
        return {x / t, y / t};
    }

    point operator*(ll t) const {
        return {x * t, y * t};
    }

    bool operator==(point pt) const {
        return x == pt.x && y == pt.y;
    }

    bool operator!=(point pt) const {
        return x != pt.x || y != pt.y;
    }

    ll operator*(point pt) const {
        return x * pt.y - y * pt.x;
    }

    ll operator^(point pt) const {
        return x * pt.x + y * pt.y;
    }

    point operator+(point pt) const {
        return {x + pt.x, y + pt.y};
    }

    point operator-(point pt) const {
        return {x - pt.x, y - pt.y};
    }

    point rotate_45_normal() {
        point ans(x - y, x + y);
        if (abs(x + y) == 2 || abs(x - y) == 2)
            return ans / 2;
        else
            return ans;
    }

    point rotate_90() {
        return {-y, x};
    }

};

pair<int, int> queen(int r, int c, int j0, int j1) {
    for (point dir(1, 0); dir != point(-1, 0); dir = dir.rotate_45_normal()) {
        //cout << "! " << dir.x << ' ' << dir.y << endl;
        if (dir * point(j1 - j0, r - 1) == 0)
            return {1, 1};
    }
    int cnt = 2;
    for (point dir(1, 1); dir != point(-1, -1); dir = dir.rotate_90()) {
        // (j0, 0) + dir * k = (j1, y0)
        ll y0 = (j1 - j0) / dir.x * dir.y;
        if (0 <= y0 && y0 < r)
            cnt += 2;
        // (j0, 0) + dir * k = (x1, r - 1)
        ll x1 = j0 + (r - 1) / dir.y * dir.x;
        if (0 <= x1 && x1 < c)
            ++cnt;
        // (x2, 0) + dir * k = (j1, r - 1)
        ll x2 = j1 - (r - 1) / dir.y * dir.x;
        if (0 <= x2 && x2 < c)
            ++cnt;
    }
    if ((j0 + j1 + r) % 2) {
        int jright = 2 * c - j1 - 1;
        if (point(jright - j0, r - 1) * point(1, 1) >= 0)
            ++cnt;
        int jleft = -j1 - 1;
        if (point(-1, 1) * point(jleft - j0, r - 1) >= 0)
            ++cnt;
    }
    return {2, cnt};
}

const int MAXC = 1124;
int choose[MAXC * 2][MAXC * 2];
int balls_borders[MAXC][MAXC];
int choose_n0;

pair<int, int> bishop_goleft(int r, int c, int j0, int j1) {
    if (j0 == c - 1 && j1 == 0 && r == c)
        return {1, 1};
    int loopcnt = min(0, r / c / 2 - 3);
    point pt(0, j0 + loopcnt * (c - 1) * 2);
    int minmoves = 1 + loopcnt * 2;
    int rmv = 0;
    int lst = 0;
    while (true) {
        if ((point(j1, r - 1) - pt) * point(1, 1) >= 0) {
            ++minmoves;
            lst = r - 1 - pt.y;
            pt = pt + point(lst, lst);
            rmv = abs(j1 - pt.x) / 2;
            break;
        }
        minmoves += 2;
        pt = pt + point(c - 1, c - 1);
        if (point(-1, 1) * (point(j1, r - 1) - pt) >= 0) {
            lst = r - 1 - pt.y;
            pt = pt + point(-lst, lst);
            rmv = abs(j1 - pt.x) / 2;
            break;
        }
        pt = pt + point(1 - c, c - 1);
    }
    lst = c - 1 - lst;
    int cnt = 0;
    if (minmoves == 2)
        return {2, 1};
    for (int rm0 = 0; rm0 <= j0 && rm0 <= rmv; ++rm0) {
        int Cvl = 0;
        if (minmoves == 3) {
            if (lst + rm0 >= rmv)
                ++cnt;
            continue;
        }
        cnt = Add(cnt, balls_borders[minmoves - 4 - choose_n0][rmv - rm0]);
        if (lst + rm0 < rmv) {
            cnt = Sub(cnt, balls_borders[minmoves - 4 - choose_n0][rmv - rm0 - lst - 1]);
        }
    }
    //cout << "---" << ' ' << minmoves << endl;
    return {minmoves, cnt};
}

pair<int, int> bishop(int r, int c, int j0, int j1) {
    if ((r + j0 + j1) % 2 == 0)
        return {0, 0};
    pair<int, int> ansup = bishop_goleft(r, c, j0, j1);
    pair<int, int> ansdown = bishop_goleft(r, c, c - j0 - 1, c - j1 - 1);
    if (ansup.first == ansdown.first)
        return {ansup.first, Add(ansup.second, ansdown.second)};
    return min(ansup, ansdown);
}

struct matrix {
    matrix(int sz_): sz(sz_), f(sz_, vector<int>(sz_, 0)) {}

    vector<int>& operator[](int i) {
        return f[i];
    }
    
    matrix operator*(matrix m) {
        matrix ans(sz);
        for (int i = 0; i < sz; ++i) {
            for (int j = 0; j < sz; ++j) {
                for (int t = 0; t < sz; ++t) {
                    ans[i][j] = Add(ans[i][j], Mul(m[t][j], f[i][t]));
                }
            }
        }
        return ans;
    }

    int sz;
    vector<vector<int>> f;
};

matrix pw(matrix a, int m) {
    if (m == 1)
        return a;
    if (m % 2)
        return a * pw(a, m - 1);
    return pw(a * a, m / 2);
}

signed main() {
    int r, c, q;
    cin >> r >> c >> q;
    matrix king_ans(c);
    for (int i = 0; i < c; ++i) {
        king_ans[i][i] = 1;
        if (i)
            king_ans[i][i - 1] = 1;
        if (i + 1 < c)
            king_ans[i][i + 1] = 1;
    }
    if (c <= 100)
        king_ans = pw(king_ans, r - 1);

    choose_n0 = max(0, r / c - c - 4);
    for (int nadd = 0; nadd <= c * 2 + 100; ++nadd) {
        int n = choose_n0 + nadd;
        choose[nadd][0] = 1;
        for (int k = 1; k <= c * 2 + 100 && k <= n; ++k) {
            if (nadd == 0)
                choose[nadd][k] = Div(Mul(choose[nadd][k - 1], n - k + 1), k);
            else
                choose[nadd][k] = Add(choose[nadd - 1][k], choose[nadd - 1][k - 1]);
        }
    }
    for (int t = 0; t < c + 50; ++t) {
        for (int p = 0; p < c + 50; ++p) {
            balls_borders[t][p] = choose[p + t][p];
            if (p)
                balls_borders[t][p] = Add(balls_borders[t][p], balls_borders[t][p - 1]);
        }
    }

    while (q--) {
        char t;
        int j0, j1;
        cin >> t >> j0 >> j1;
        --j0, --j1;
        pair<int, int> ans;
        if (t == 'P') {
            ans = pawn(r, c, j0, j1);
        } else if (t == 'Q') {
            ans = queen(r, c, j0, j1);
        } else if (t == 'R') {
            ans = rook(r, c, j0, j1);
        } else if (t == 'K') {
            ans = {r - 1, king_ans[j0][j1]};
        } else if (t == 'B') {
            ans = bishop(r, c, j0, j1);
        }
        cout << ans.first << ' ' << ans.second << '\n';
    }
}

Compilation message

chessrush.cpp: In function 'std::pair<int, int> bishop_goleft(int, int, int, int)':
chessrush.cpp:143:13: warning: unused variable 'Cvl' [-Wunused-variable]
  143 |         int Cvl = 0;
      |             ^~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 980 KB Output is correct
2 Incorrect 33 ms 20312 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 980 KB Output is correct
2 Correct 4 ms 1236 KB Output is correct
3 Correct 1 ms 852 KB Output is correct
4 Correct 10 ms 8148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 852 KB Output is correct
2 Correct 1 ms 1108 KB Output is correct
3 Correct 1 ms 980 KB Output is correct
4 Correct 2 ms 1108 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 852 KB Output is correct
2 Correct 1 ms 1108 KB Output is correct
3 Correct 1 ms 980 KB Output is correct
4 Correct 2 ms 1108 KB Output is correct
5 Correct 37 ms 24392 KB Output is correct
6 Correct 19 ms 12772 KB Output is correct
7 Runtime error 18 ms 3308 KB Execution killed with signal 11
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 1348 KB Output is correct
2 Correct 115 ms 3024 KB Output is correct
3 Correct 79 ms 2652 KB Output is correct
4 Correct 1 ms 980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 1348 KB Output is correct
2 Correct 115 ms 3024 KB Output is correct
3 Correct 79 ms 2652 KB Output is correct
4 Correct 1 ms 980 KB Output is correct
5 Correct 6 ms 1448 KB Output is correct
6 Correct 5 ms 1364 KB Output is correct
7 Correct 80 ms 2656 KB Output is correct
8 Correct 117 ms 3020 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 1348 KB Output is correct
2 Correct 115 ms 3024 KB Output is correct
3 Correct 79 ms 2652 KB Output is correct
4 Correct 1 ms 980 KB Output is correct
5 Correct 6 ms 1448 KB Output is correct
6 Correct 5 ms 1364 KB Output is correct
7 Correct 80 ms 2656 KB Output is correct
8 Correct 117 ms 3020 KB Output is correct
9 Correct 14 ms 1620 KB Output is correct
10 Correct 25 ms 1740 KB Output is correct
11 Correct 685 ms 6120 KB Output is correct
12 Correct 617 ms 6012 KB Output is correct
13 Correct 18 ms 1748 KB Output is correct
14 Correct 1 ms 980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 1348 KB Output is correct
2 Correct 115 ms 3024 KB Output is correct
3 Correct 79 ms 2652 KB Output is correct
4 Correct 1 ms 980 KB Output is correct
5 Correct 6 ms 1448 KB Output is correct
6 Correct 5 ms 1364 KB Output is correct
7 Correct 80 ms 2656 KB Output is correct
8 Correct 117 ms 3020 KB Output is correct
9 Correct 14 ms 1620 KB Output is correct
10 Correct 25 ms 1740 KB Output is correct
11 Correct 685 ms 6120 KB Output is correct
12 Correct 617 ms 6012 KB Output is correct
13 Correct 18 ms 1748 KB Output is correct
14 Correct 1 ms 980 KB Output is correct
15 Correct 20 ms 1748 KB Output is correct
16 Correct 21 ms 1716 KB Output is correct
17 Incorrect 49 ms 27300 KB Output isn't correct
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 980 KB Output is correct
2 Incorrect 33 ms 20312 KB Output isn't correct
3 Halted 0 ms 0 KB -