답안 #548309

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
548309 2022-04-13T02:18:06 Z Jomnoi Examination (JOI19_examination) C++17
2 / 100
3000 ms 23664 KB
#include <bits/stdc++.h>
#define DEBUG 0
using namespace std;

const int MAX_N = 1e5 + 10;
const int MAX_Q = 1e5 + 10;
const int B = 330;

int S[MAX_N], T[MAX_N], ST[MAX_N];
int X[MAX_Q], Y[MAX_Q], Z[MAX_Q];
int ans[MAX_Q];
vector <int> pA[2 * MAX_N], pB[2 * MAX_N];

class FenwickTree {
private :
    int N;
    vector <int> fenwick;
public :
    FenwickTree() {}
    FenwickTree(const int &n) : N(n), fenwick(N + 1, 0) {}

    void update(const int &idx, const int &val) {
        for(int i = idx; i <= N; i += (i & -i)) {
            fenwick[i] += val;
        }
    }

    int get(const int &idx) {
        int res = 0;
        for(int i = idx; i >= 1; i -= (i & -i)) {
            res += fenwick[i];
        }
        return res;
    }

    int query(const int &idx) {
        return get(N) - get(idx - 1);
    }
};

class Query {
public :
    int a, b, c, i;
    Query() {}
    Query(const int &a_, const int &b_, const int &c_, const int &i_) : a(a_), b(b_), c(c_), i(i_) {}

    bool operator<(const Query &o) const {
        return make_pair((a + B - 1) / B, b) < make_pair((o.a + B - 1) / B, o.b);
    }
};

void compress(vector <int> &vec) {
    sort(vec.begin(), vec.end());
    vec.resize(unique(vec.begin(), vec.end()) - vec.begin());
}

int main() {
    cin.tie(0)->sync_with_stdio(0);
    int N, Q;
    cin >> N >> Q;
    vector <int> sa({-1}), sb({-1}), sc({-1});
    for(int i = 1; i <= N; i++) {
        cin >> S[i] >> T[i];
        ST[i] = S[i] + T[i];
        sa.push_back(S[i]);
        sb.push_back(T[i]);
        sc.push_back(ST[i]);
    }
    for(int i = 1; i <= Q; i++) {
        cin >> X[i] >> Y[i] >> Z[i];
        sa.push_back(X[i]);
        sb.push_back(Y[i]);
        sc.push_back(Z[i]);
    }

    // Compress
    compress(sa);
    compress(sb);
    compress(sc);
    for(int i = 1; i <= N; i++) {
        S[i] = lower_bound(sa.begin(), sa.end(), S[i]) - sa.begin();
        T[i] = lower_bound(sb.begin(), sb.end(), T[i]) - sb.begin();
        ST[i] = lower_bound(sc.begin(), sc.end(), ST[i]) - sc.begin();

        pA[S[i]].push_back(i);
        pB[T[i]].push_back(i);
    }
    for(int i = 1; i <= Q; i++) {
        X[i] = lower_bound(sa.begin(), sa.end(), X[i]) - sa.begin();
        Y[i] = lower_bound(sb.begin(), sb.end(), Y[i]) - sb.begin();
        Z[i] = lower_bound(sc.begin(), sc.end(), Z[i]) - sc.begin();
    }

    // MO's algorithm
    vector <Query> query;
    for(int i = 1; i <= Q; i++) {
        query.push_back(Query(X[i], Y[i], Z[i], i));
    }
    sort(query.begin(), query.end());

    FenwickTree fw(sc.size());
    int cur_l, cur_r;
    for(int i = 0; i < Q; i++) {
        auto [l, r, c, id] = query[i];
        if(i == 0) {
            cur_l = l, cur_r = r;
            for(int i = 1; i <= N; i++) {
                if(S[i] >= cur_l and T[i] >= cur_r) {
                    fw.update(ST[i], 1);
                }
            }
        }
        else {
            while(cur_l > l) {
                cur_l--;
                for(auto idx : pA[cur_l]) {
                    if(T[idx] >= cur_r) {
                        fw.update(ST[idx], 1);
                    }
                }
            }
            while(cur_r < r) {
                for(auto idx : pB[cur_r]) {
                    if(S[idx] >= cur_l) {
                        fw.update(ST[idx], -1);
                    }
                }
                cur_r++;
            }
            while(cur_l < l) {
                for(auto idx : pA[cur_l]) {
                    if(T[idx] >= cur_r) {
                        fw.update(ST[idx], -1);
                    }
                }
                cur_l++;
            }
            while(cur_r > r) {
                cur_r--;
                for(auto idx : pB[cur_r]) {
                    if(S[idx] >= cur_l) {
                        fw.update(ST[idx], 1);
                    }
                }
            }
        }

        ans[id] = fw.query(c);
    }

    for(int i = 1; i <= Q; i++) {
        cout << ans[i] << '\n';
    }
    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 9684 KB Output is correct
2 Correct 6 ms 9684 KB Output is correct
3 Correct 6 ms 9732 KB Output is correct
4 Correct 7 ms 9748 KB Output is correct
5 Correct 5 ms 9664 KB Output is correct
6 Correct 5 ms 9684 KB Output is correct
7 Correct 17 ms 10196 KB Output is correct
8 Correct 16 ms 10196 KB Output is correct
9 Correct 17 ms 10196 KB Output is correct
10 Correct 13 ms 10068 KB Output is correct
11 Correct 40 ms 10248 KB Output is correct
12 Correct 27 ms 10124 KB Output is correct
13 Correct 17 ms 10348 KB Output is correct
14 Correct 20 ms 10256 KB Output is correct
15 Correct 15 ms 10324 KB Output is correct
16 Correct 52 ms 10204 KB Output is correct
17 Correct 13 ms 10196 KB Output is correct
18 Correct 15 ms 10068 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2829 ms 21188 KB Output is correct
2 Correct 2804 ms 23652 KB Output is correct
3 Correct 2668 ms 23664 KB Output is correct
4 Correct 1037 ms 21476 KB Output is correct
5 Execution timed out 3069 ms 21024 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2829 ms 21188 KB Output is correct
2 Correct 2804 ms 23652 KB Output is correct
3 Correct 2668 ms 23664 KB Output is correct
4 Correct 1037 ms 21476 KB Output is correct
5 Execution timed out 3069 ms 21024 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 9684 KB Output is correct
2 Correct 6 ms 9684 KB Output is correct
3 Correct 6 ms 9732 KB Output is correct
4 Correct 7 ms 9748 KB Output is correct
5 Correct 5 ms 9664 KB Output is correct
6 Correct 5 ms 9684 KB Output is correct
7 Correct 17 ms 10196 KB Output is correct
8 Correct 16 ms 10196 KB Output is correct
9 Correct 17 ms 10196 KB Output is correct
10 Correct 13 ms 10068 KB Output is correct
11 Correct 40 ms 10248 KB Output is correct
12 Correct 27 ms 10124 KB Output is correct
13 Correct 17 ms 10348 KB Output is correct
14 Correct 20 ms 10256 KB Output is correct
15 Correct 15 ms 10324 KB Output is correct
16 Correct 52 ms 10204 KB Output is correct
17 Correct 13 ms 10196 KB Output is correct
18 Correct 15 ms 10068 KB Output is correct
19 Correct 2829 ms 21188 KB Output is correct
20 Correct 2804 ms 23652 KB Output is correct
21 Correct 2668 ms 23664 KB Output is correct
22 Correct 1037 ms 21476 KB Output is correct
23 Execution timed out 3069 ms 21024 KB Time limit exceeded
24 Halted 0 ms 0 KB -