Submission #546647

# Submission time Handle Problem Language Result Execution time Memory
546647 2022-04-07T23:16:56 Z Olympia Lampice (COCI19_lampice) C++14
42 / 110
4889 ms 14184 KB
#include <cmath>
#include <iostream>
#include <set>
#include <climits>
#include <cstdio>
#include <algorithm>
#include <cassert>
#include <string>
#include <vector>
#include <iomanip>
#include <unordered_map>
#include <type_traits>
#include <string>
#include <queue>
#include <map>
#include <ext/pb_ds/assoc_container.hpp>
 
 
using namespace std;
 
const int MOD = 1e9 + 9;
const int BASE = 293;
const int inv = 706484648;
 
 
class Tree {
public:
    vector<int> sub, depth, parent;
    vector<int64_t> dp1, dp2;
    vector<bool> hasVisited;
    vector<int> adj[(int)5e4];
    vector<int64_t> powr, ipowr;
    int dp[(int)5e4][17];
    string s;
    int sz;
    int dfs1 (int curNode, int prevNode) {
        sub[curNode] = 1;
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode) sub[curNode] += dfs1(i, curNode);
        return (sz = sub[curNode]);
    }
    int get_centroid (int curNode, int prevNode) {
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode && sub[i] > sz/2) return get_centroid(i, curNode);
        return curNode;
    }
    int max_len; int fine = 0;
    void fill (int curNode, int prevNode, int d, int64_t val1, int64_t val2) {
        dp1[curNode] = val1 = (BASE * val1 + s[curNode]) % MOD;
        dp2[curNode] = val2 = (powr[d] * s[curNode] + val2) % MOD;
        fine += (dp1[curNode] == dp2[curNode] && d + 1 == max_len);
        dp[curNode][0] = prevNode;
        for (int i = 1; i < 17; i++) {
            dp[curNode][i] = dp[dp[curNode][i - 1]][i - 1];
        }
        depth[curNode] = d;
        parent[curNode] = prevNode;
        for (int i: adj[curNode]) {
            if (!hasVisited[i] && i != prevNode) {
                fill(i, curNode, d + 1, val1, val2);
            }
        }
    }
 
    int64_t go_up (int l, int d) {
        while (d) {
            l = dp[l][(int)log2(d & -d)];
            d -= (d & -d);
        }
        return l;
    }
 
    int centroid;
 
    __gnu_pbds::gp_hash_table<int, bool> m1;
    vector<int> to_do;
    void dfs (int curNode, int prevNode) {
        if (depth[curNode] + 1 >= max_len) {
            return;
        }
        to_do.push_back(dp1[curNode]);
        for (int i: adj[curNode]) {
            if (i != prevNode && !hasVisited[i]) {
                dfs (i, curNode);
            }
        }
        if (2 * depth[curNode] + 1 >= max_len) {
            int x = go_up(curNode, max_len - depth[curNode] - 2);
            if (dp1[parent[x]] == dp2[parent[x]]) {
                if (m1.find(((dp1[curNode] - (powr[max_len - depth[curNode] - 1] * dp1[parent[x]]) % MOD + MOD) % MOD + powr[max_len - depth[curNode] - 1] * s[centroid]) % MOD) != m1.end()) {
                    fine ++;
                    return;
                }
            }
        }
    }
 
    bool solve (int curNode) {
        dfs1(curNode, curNode);
        centroid = get_centroid(curNode, curNode);
        hasVisited[centroid] = true;
        depth[centroid] = 0;
        for (int i = 0; i < 17; i++) dp[centroid][i] = centroid;
        dp1[centroid] = s[centroid], dp2[centroid] = s[centroid];
        fine += (max_len == 1);
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                fill(i, centroid, 1, s[centroid], s[centroid]);
            }
        }
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1[j] = 1;
                to_do.clear();
            }
        }
        if (fine) return true;
        reverse(adj[centroid].begin(), adj[centroid].end());
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1[j] = 1;
                to_do.clear();
            }
        }
        if (fine) return true;
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                if (solve(i)) {
                    return true;
                }
            }
        }
        return false;
    }
    Tree (int n) {
        sub.resize(n), hasVisited.assign(n, false); powr.push_back(1); for (int i = 0; i <= n + 5; i++) powr.push_back(powr.back() * BASE), powr.back() %= MOD;
        ipowr.push_back(1); for (int i = 0; i <= n + 5; i++) ipowr.push_back(ipowr.back() * inv), powr.back() %= MOD;
        parent.resize(n), depth.resize(n), dp1.resize(n), dp2.resize(n);
    }
};
 
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    int n; cin >> n;
    string s; cin >> s;
    Tree myTree(n);
    for (int i = 0; i < n - 1; i++) {
        int u, v;
        cin >> u >> v;
        u--, v--;
        myTree.adj[u].push_back(v), myTree.adj[v].push_back(u);
    }
    myTree.s = s;
    int myMax = 0;
    int l = 0;
    int r = s.length()/2;
    while (l != r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l); l = 0;
    r = s.length()/2;
    while (l < r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m + 1; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l + 1);
    cout << myMax;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4820 KB Output is correct
2 Correct 16 ms 4820 KB Output is correct
3 Correct 45 ms 4948 KB Output is correct
4 Correct 50 ms 4948 KB Output is correct
5 Correct 2 ms 4692 KB Output is correct
6 Correct 2 ms 4692 KB Output is correct
7 Correct 2 ms 4692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2656 ms 13336 KB Output is correct
2 Correct 2134 ms 13576 KB Output is correct
3 Correct 1379 ms 13624 KB Output is correct
4 Correct 1632 ms 13912 KB Output is correct
5 Correct 2557 ms 14184 KB Output is correct
6 Correct 304 ms 12652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4618 ms 12564 KB Output is correct
2 Correct 4889 ms 12620 KB Output is correct
3 Correct 4353 ms 13332 KB Output is correct
4 Incorrect 3572 ms 11912 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4820 KB Output is correct
2 Correct 16 ms 4820 KB Output is correct
3 Correct 45 ms 4948 KB Output is correct
4 Correct 50 ms 4948 KB Output is correct
5 Correct 2 ms 4692 KB Output is correct
6 Correct 2 ms 4692 KB Output is correct
7 Correct 2 ms 4692 KB Output is correct
8 Correct 2656 ms 13336 KB Output is correct
9 Correct 2134 ms 13576 KB Output is correct
10 Correct 1379 ms 13624 KB Output is correct
11 Correct 1632 ms 13912 KB Output is correct
12 Correct 2557 ms 14184 KB Output is correct
13 Correct 304 ms 12652 KB Output is correct
14 Correct 4618 ms 12564 KB Output is correct
15 Correct 4889 ms 12620 KB Output is correct
16 Correct 4353 ms 13332 KB Output is correct
17 Incorrect 3572 ms 11912 KB Output isn't correct
18 Halted 0 ms 0 KB -