Submission #546620

# Submission time Handle Problem Language Result Execution time Memory
546620 2022-04-07T21:27:51 Z Olympia Lampice (COCI19_lampice) C++17
42 / 110
5000 ms 13092 KB
#include <cmath>
#include <iostream>
#include <set>
#include <climits>
#include <cstdio>
#include <algorithm>
#include <cassert>
#include <string>
#include <vector>
#include <iomanip>
#include <unordered_map>
#include <type_traits>
#include <string>
#include <queue>
#include <map>

using namespace std;

const int MOD = 1e9 + 9;
const int BASE = 293;
const int inv = 706484648;


class Tree {
public:
    vector<int> sub, depth, parent;
    vector<int64_t> dp1, dp2;
    vector<bool> hasVisited;
    vector<int> adj[(int)5e4];
    vector<int64_t> powr, ipowr;
    int dp[(int)5e4][17];
    string s;
    int sz;
    int dfs1 (int curNode, int prevNode) {
        sub[curNode] = 1;
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode) sub[curNode] += dfs1(i, curNode);
        return (sz = sub[curNode]);
    }
    int get_centroid (int curNode, int prevNode) {
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode && sub[i] > sz/2) return get_centroid(i, curNode);
        return curNode;
    }
    int max_len; int fine = 0;
    void fill (int curNode, int prevNode, int d, int64_t val1, int64_t val2) {
        dp1[curNode] = val1 = (BASE * val1 + s[curNode]) % MOD;
        dp2[curNode] = val2 = (powr[d] * s[curNode] + val2) % MOD;
        fine += (dp1[curNode] == dp2[curNode] && d + 1 == max_len);
        dp[curNode][0] = prevNode;
        for (int i = 1; i < 17; i++) {
            dp[curNode][i] = dp[dp[curNode][i - 1]][i - 1];
        }
        depth[curNode] = d;
        parent[curNode] = prevNode;
        for (int i: adj[curNode]) {
            if (!hasVisited[i] && i != prevNode) {
                fill(i, curNode, d + 1, val1, val2);
            }
        }
    }

    int64_t go_up (int l, int d) {
        while (d) {
            l = dp[l][(int)log2(d & -d)];
            d -= (d & -d);
        }
        return l;
    }

    int centroid;
    int64_t get (int l, int r) {
        if (depth[l] < depth[r]) {
            return (dp1[r] - (powr[depth[r] - depth[l] + 1] * dp1[parent[l]]) % MOD + MOD) % MOD;
        } else {
            return (((dp2[l] - dp2[parent[r]] + MOD) % MOD) * (ipowr[depth[r]])) % MOD;
        }
    }

    set<int> m1;
    vector<int> to_do;
    void dfs (int curNode, int prevNode) {
        if (depth[curNode] + 1 >= max_len) {
            return;
        }
        to_do.push_back(dp1[curNode]);
        //m1[dp1[curNode]]++, v1[dp1[curNode]]++;
        if (2 * depth[curNode] + 1 >= max_len) {
            int x = go_up(curNode, max_len - depth[curNode] - 2);
            if (dp1[parent[x]] == dp2[parent[x]]) {
                int64_t get_val = get(x, curNode) + powr[max_len - depth[curNode] - 1] * s[centroid];
                get_val %= MOD;
                if (m1.count(get_val)) {
                    fine ++;
                    return;
                }
            }
        }
        for (int i: adj[curNode]) {
            if (i != prevNode && !hasVisited[i]) {
                dfs (i, curNode);
            }
        }
    }

    bool solve (int curNode) {
        dfs1(curNode, curNode);
        centroid = get_centroid(curNode, curNode);
        hasVisited[centroid] = true;
        depth[centroid] = 0;
        for (int i = 0; i < 17; i++) dp[centroid][i] = centroid;
        dp1[centroid] = s[centroid], dp2[centroid] = s[centroid];
        fine += (max_len == 1);
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                fill(i, centroid, 1, s[centroid], s[centroid]);
            }
        }
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1.insert(j);
                to_do.clear();
            }
        }
        if (fine) return true;
        reverse(adj[centroid].begin(), adj[centroid].end());
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1.insert(j);
                to_do.clear();
            }
        }
        if (fine) return true;
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                if (solve(i)) {
                    return true;
                }
            }
        }
        return false;
    }
    Tree (int n) {
        sub.resize(n), hasVisited.assign(n, false); powr.push_back(1); for (int i = 0; i <= n + 5; i++) powr.push_back(powr.back() * BASE), powr.back() %= MOD;
        ipowr.push_back(1); for (int i = 0; i <= n + 5; i++) ipowr.push_back(ipowr.back() * inv), powr.back() %= MOD;
        parent.resize(n), depth.resize(n), dp1.resize(n), dp2.resize(n);
    }
};

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    int n; cin >> n;
    string s; cin >> s;
    Tree myTree(n);
    for (int i = 0; i < n - 1; i++) {
        int u, v;
        cin >> u >> v;
        u--, v--;
        myTree.adj[u].push_back(v), myTree.adj[v].push_back(u);
    }
    myTree.s = s;
    int myMax = 0;
    int l = 0;
    int r = s.length()/2;
    while (l != r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l);
    l = 0;
    r = s.length()/2;
    while (l != r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m + 1; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l + 1);
    cout << myMax;
    //cout << inv(BASE) << '\n';
}
# Verdict Execution time Memory Grader output
1 Correct 7 ms 4820 KB Output is correct
2 Correct 16 ms 4820 KB Output is correct
3 Correct 68 ms 5004 KB Output is correct
4 Correct 61 ms 4948 KB Output is correct
5 Correct 2 ms 4692 KB Output is correct
6 Correct 3 ms 4692 KB Output is correct
7 Correct 3 ms 4692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3612 ms 12012 KB Output is correct
2 Correct 3699 ms 12140 KB Output is correct
3 Correct 2568 ms 12356 KB Output is correct
4 Correct 3059 ms 12728 KB Output is correct
5 Correct 4427 ms 13092 KB Output is correct
6 Correct 572 ms 11916 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5067 ms 11584 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 7 ms 4820 KB Output is correct
2 Correct 16 ms 4820 KB Output is correct
3 Correct 68 ms 5004 KB Output is correct
4 Correct 61 ms 4948 KB Output is correct
5 Correct 2 ms 4692 KB Output is correct
6 Correct 3 ms 4692 KB Output is correct
7 Correct 3 ms 4692 KB Output is correct
8 Correct 3612 ms 12012 KB Output is correct
9 Correct 3699 ms 12140 KB Output is correct
10 Correct 2568 ms 12356 KB Output is correct
11 Correct 3059 ms 12728 KB Output is correct
12 Correct 4427 ms 13092 KB Output is correct
13 Correct 572 ms 11916 KB Output is correct
14 Execution timed out 5067 ms 11584 KB Time limit exceeded
15 Halted 0 ms 0 KB -