답안 #546596

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
546596 2022-04-07T21:05:42 Z Olympia Lampice (COCI19_lampice) C++17
17 / 110
5000 ms 13312 KB
#include <cmath>
#include <iostream>
#include <set>
#include <climits>
#include <cstdio>
#include <algorithm>
#include <cassert>
#include <string>
#include <vector>
#include <iomanip>
#include <unordered_map>
#include <type_traits>
#include <string>
#include <queue>
#include <map>
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")

using namespace std;

const int MOD = 1e9 + 9;
const int BASE = 293;
const int inv = 706484648;


class Tree {
public:
    vector<int> sub, depth, parent;
    vector<int64_t> dp1, dp2;
    vector<bool> hasVisited;
    vector<int> adj[(int)5e4];
    vector<int64_t> powr, ipowr;
    int dp[(int)5e4][17];
    string s;
    int sz;
    int dfs1 (int curNode, int prevNode) {
        sub[curNode] = 1;
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode) sub[curNode] += dfs1(i, curNode);
        return (sz = sub[curNode]);
    }
    int get_centroid (int curNode, int prevNode) {
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode && sub[i] > sz/2) return get_centroid(i, curNode);
        return curNode;
    }
    int max_len; int fine = 0;
    void fill (int curNode, int prevNode, int d, int64_t val1, int64_t val2) {
        dp1[curNode] = val1 = (BASE * val1 + s[curNode]) % MOD;
        dp2[curNode] = val2 = (powr[d] * s[curNode] + val2) % MOD;
        fine += (dp1[curNode] == dp2[curNode] && d + 1 == max_len);
        dp[curNode][0] = prevNode;
        for (int i = 1; i < 17; i++) {
            dp[curNode][i] = dp[dp[curNode][i - 1]][i - 1];
        }
        depth[curNode] = d;
        parent[curNode] = prevNode;
        for (int i: adj[curNode]) {
            if (!hasVisited[i] && i != prevNode) {
                fill(i, curNode, d + 1, val1, val2);
            }
        }
    }

    int64_t go_up (int l, int d) {
        while (d) {
            l = dp[l][(int)log2(d & -d)];
            d -= (d & -d);
        }
        return l;
    }

    int centroid;
    int64_t get (int l, int r) {
        if (depth[l] < depth[r]) {
            return (dp1[r] - (powr[depth[r] - depth[l] + 1] * dp1[parent[l]]) % MOD + MOD) % MOD;
        } else {
            return (((dp2[l] - dp2[parent[r]] + MOD) % MOD) * (ipowr[depth[r]])) % MOD;
        }
    }

    set<int> m1;
    vector<int> to_do;
    void dfs (int curNode, int prevNode) {
        if (depth[curNode] + 1 >= max_len) {
            return;
        }
        to_do.push_back(dp1[curNode]);
        //m1[dp1[curNode]]++, v1[dp1[curNode]]++;
        if (2 * depth[curNode] + 1 >= max_len) {
            if (dp1[go_up(curNode, max_len - depth[curNode] - 1)] == dp2[go_up(curNode, max_len - depth[curNode] - 1)]) {
                int64_t get_val = get(go_up(curNode, max_len - depth[curNode] - 2), curNode) + powr[max_len - depth[curNode] - 1] * s[centroid];
                get_val %= MOD;
                if (m1.count(get_val)) {
                    fine ++;
                    return;
                }
            }
        }
        for (int i: adj[curNode]) {
            if (i != prevNode && !hasVisited[i]) {
                dfs (i, curNode);
            }
        }
    }

    bool solve (int curNode) {
        dfs1(curNode, curNode);
        centroid = get_centroid(curNode, curNode);
        hasVisited[centroid] = true;
        depth[centroid] = 0;
        //dp[centroid].assign(dp[centroid].size(), centroid);
        for (int i = 0; i < 17; i++) {
            dp[centroid][i] = centroid;
        }
        dp1[centroid] = s[centroid], dp2[centroid] = s[centroid];
        fine += (max_len == 1);
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                fill(i, centroid, 1, s[centroid], s[centroid]);
            }
        }
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1.insert(j);
                to_do.clear();
            }
        }
        if (fine) return true;
        reverse(adj[centroid].begin(), adj[centroid].end());
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1.insert(j);
                to_do.clear();
            }
        }
        if (fine) return true;
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                if (solve(i)) {
                    return true;
                }
            }
        }
        return false;
    }
    Tree (int n) {
        sub.resize(n), hasVisited.assign(n, false); powr.push_back(1); for (int i = 0; i <= n + 5; i++) powr.push_back(powr.back() * BASE), powr.back() %= MOD;
        ipowr.push_back(1); for (int i = 0; i <= n + 5; i++) ipowr.push_back(ipowr.back() * inv), powr.back() %= MOD;
        parent.resize(n), depth.resize(n), dp1.resize(n), dp2.resize(n);
    }
};

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    int n; cin >> n;
    string s; cin >> s;
    Tree myTree(n);
    for (int i = 0; i < n - 1; i++) {
        int u, v;
        cin >> u >> v;
        u--, v--;
        myTree.adj[u].push_back(v), myTree.adj[v].push_back(u);
    }
    myTree.s = s;
    int myMax = 0;
    int l = 0;
    int r = s.length()/2;
    while (l != r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l);
    l = 0;
    r = s.length()/2;
    while (l != r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m + 1; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l + 1);
    cout << myMax;
    //cout << inv(BASE) << '\n';
}

Compilation message

lampice.cpp:17: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
   17 | #pragma GCC optimization ("O3")
      | 
lampice.cpp:18: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
   18 | #pragma GCC optimization ("unroll-loops")
      |
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 4820 KB Output is correct
2 Correct 15 ms 4904 KB Output is correct
3 Correct 55 ms 4992 KB Output is correct
4 Correct 54 ms 4948 KB Output is correct
5 Correct 2 ms 4692 KB Output is correct
6 Correct 2 ms 4692 KB Output is correct
7 Correct 3 ms 4820 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3695 ms 12300 KB Output is correct
2 Correct 3781 ms 12444 KB Output is correct
3 Correct 2558 ms 12680 KB Output is correct
4 Correct 3271 ms 13072 KB Output is correct
5 Execution timed out 5079 ms 13312 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Execution timed out 5095 ms 11720 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 4820 KB Output is correct
2 Correct 15 ms 4904 KB Output is correct
3 Correct 55 ms 4992 KB Output is correct
4 Correct 54 ms 4948 KB Output is correct
5 Correct 2 ms 4692 KB Output is correct
6 Correct 2 ms 4692 KB Output is correct
7 Correct 3 ms 4820 KB Output is correct
8 Correct 3695 ms 12300 KB Output is correct
9 Correct 3781 ms 12444 KB Output is correct
10 Correct 2558 ms 12680 KB Output is correct
11 Correct 3271 ms 13072 KB Output is correct
12 Execution timed out 5079 ms 13312 KB Time limit exceeded
13 Halted 0 ms 0 KB -