#include <vector>
#include <algorithm>
#include <iostream>
#include <set>
#include <cmath>
#include <map>
#include <random>
#include <cassert>
#include <ctime>
#include <bitset>
#include <stack>
#include <cstdlib>
#include <queue>
#include <stdint.h>
#include <vector>
#include <cassert>
#include <numeric>
#include <iostream>
#include <algorithm>
#include <functional>
#include <cstdio>
#include <limits.h>
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
using namespace std;
struct Domino {
pair<int, int> from, to;
int64_t cost;
bool operator<(const Domino &d1) const {
if (this->cost != d1.cost) return (this->cost > d1.cost);
if (this->from != d1.from) return (this->from < d1.from);
if (this->to != d1.to) return (this->to < d1.to);
return false;
}
};
class Graph {
public:
vector<int64_t> weight;
vector<vector<int>> adj;
vector<int> dp;
void add_edge(int u, int v) {
adj[u][v] = adj[v][u] = 1;
}
Graph(int n) {
adj.resize(n);
for (int i = 0; i < n; i++) {
adj[i].assign(n, 0);
}
}
void solve(int k, bool b) {
dp.assign((1 << (int) adj.size()), 0);
for (int i = 1; i < dp.size(); i++) {
if (__builtin_popcount(i) > k) {
continue;
}
if (__builtin_popcount(i) == 1) {
dp[i] = weight[log2(i)];
continue;
}
int mx = log2(i);
int mn = log2(i & -i);
if (!adj[mx][mn] || !dp[i - (1 << mx)] || !dp[i - (1 << mn)]) {
continue;
}
dp[i] = dp[i - (1 << (int)log2(i))] + weight[(int)log2(i)];
}
if (b) return;
for (int i = 1; i < dp.size(); i++) {
int x = i;
while (x != 0) {
dp[i] = max(dp[i], dp[i - (1 << __builtin_ctzll(x))]);
x = x & (x - 1);
}
}
}
};
int main() {
//freopen("balancing.in", "r", stdin);
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n, m;
scanf("%d%d", &n, &m);
int64_t grid[n][n];
int64_t sm = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%lld", &grid[i][j]);
sm += grid[i][j];
}
}
vector<Domino> dominoes;
vector<pair<int, int>> pos;
pos.emplace_back(1, 0);
pos.emplace_back(0, 1);
for (int i = 0; i < n; i++) {
for (auto &p: pos) {
if (i + p.first < 0 || i + p.first == n) continue;
for (int j = 0; j < n; j++) {
if (j + p.second < 0 || j + p.second == n) continue;
dominoes.push_back({{i, j}, {i + p.first, j + p.second}, grid[i][j] + grid[i + p.first][j + p.second]});
}
}
nth_element(dominoes.begin(), dominoes.begin() + max(7 * (m - 1) + 1, 7), dominoes.end());
while (dominoes.size() > max(7 * (m - 1) + 1, 7)) {
dominoes.pop_back();
}
}
vector<pair<int64_t, pair<Domino, Domino>>> edges;
for (auto &d1: dominoes) {
for (auto &d2: dominoes) {
set<pair<int, int>> s;
s.insert(d1.from), s.insert(d1.to), s.insert(d2.from), s.insert(d2.to);
if (s.size() != 4) continue;
edges.push_back({d1.cost + d2.cost, {d1, d2}});
}
}
set<Domino> mySet;
for (auto &p: edges) {
mySet.insert(p.second.first), mySet.insert(p.second.second);
}
map<Domino, int> myMap;
int cntr = 0;
vector<int64_t> weights;
for (Domino d: mySet) {
weights.push_back(d.cost);
myMap[d] = cntr++;
}
int sz = floor((double)cntr/(double)1.8);
Graph gr(cntr), gr1(sz), gr2(cntr - sz);
gr.weight = weights;
for (int i = 0; i < sz; i++) gr1.weight.push_back(weights[i]);
for (int i = sz; i < cntr; i++) gr2.weight.push_back(weights[i]);
for (auto &e: edges) {
gr.add_edge(myMap[e.second.first], myMap[e.second.second]);
if (myMap[e.second.first] < sz && myMap[e.second.second] < sz)
gr1.add_edge(myMap[e.second.second], myMap[e.second.first]);
if (myMap[e.second.first] >= sz && myMap[e.second.second] >= sz)
gr2.add_edge(myMap[e.second.second] - sz, myMap[e.second.first] - sz);
}
int64_t myMax = 0;
vector<int> cnt[m + 1];
for (int i = 1; i < (1 << gr1.adj.size()); i++) {
if (__builtin_popcount(i) <= m) {
cnt[__builtin_popcount(i)].push_back(i);
}
}
for (int pc = 1; pc <= m; pc++) {
gr2.solve(m - pc, false);
for (int i: cnt[pc]) {
vector<int> nodes;
for (int j = 0; j < gr1.adj.size(); j++) {
if (i & (1 << j)) {
nodes.push_back(j);
}
}
int tot = 0;
for (int j = 0; j < gr2.adj.size(); j++) {
bool fine = true;
for (int k: nodes) {
if (!gr.adj[j + sz][k]) {
fine = false;
break;
}
}
if (fine) {
tot += (1 << j);
}
}
bool fine = true;
int total = 0;
for (int x: nodes) {
total += gr1.weight[x];
for (int y: nodes) {
if (x == y) continue;
if (!gr1.adj[x][y]) {
fine = false;
}
}
}
if (!fine) {
continue;
}
myMax = max((int64_t)gr2.dp[tot] + (int64_t)total, myMax);
}
}
cout << sm - myMax;
}
Compilation message
domino.cpp:25: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
25 | #pragma GCC optimization ("O3")
|
domino.cpp:26: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
26 | #pragma GCC optimization ("unroll-loops")
|
domino.cpp: In member function 'void Graph::solve(int, bool)':
domino.cpp:61:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
61 | for (int i = 1; i < dp.size(); i++) {
| ~~^~~~~~~~~~~
domino.cpp:77:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
77 | for (int i = 1; i < dp.size(); i++) {
| ~~^~~~~~~~~~~
domino.cpp: In function 'int main()':
domino.cpp:97:23: warning: format '%lld' expects argument of type 'long long int*', but argument 2 has type 'int64_t*' {aka 'long int*'} [-Wformat=]
97 | scanf("%lld", &grid[i][j]);
| ~~~^ ~~~~~~~~~~~
| | |
| | int64_t* {aka long int*}
| long long int*
| %ld
domino.cpp:114:32: warning: comparison of integer expressions of different signedness: 'std::vector<Domino>::size_type' {aka 'long unsigned int'} and 'const int' [-Wsign-compare]
114 | while (dominoes.size() > max(7 * (m - 1) + 1, 7)) {
| ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
domino.cpp:162:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
162 | for (int j = 0; j < gr1.adj.size(); j++) {
| ~~^~~~~~~~~~~~~~~~
domino.cpp:168:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
168 | for (int j = 0; j < gr2.adj.size(); j++) {
| ~~^~~~~~~~~~~~~~~~
domino.cpp:92:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
92 | scanf("%d%d", &n, &m);
| ~~~~~^~~~~~~~~~~~~~~~
domino.cpp:97:18: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
97 | scanf("%lld", &grid[i][j]);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
28 ms |
2260 KB |
Output is correct |
2 |
Correct |
41 ms |
2388 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
340 KB |
Output is correct |
2 |
Correct |
1 ms |
340 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
416 ms |
31736 KB |
Output is correct |
2 |
Correct |
592 ms |
31804 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
340 KB |
Output is correct |
2 |
Correct |
1 ms |
340 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
232 ms |
18080 KB |
Output is correct |
2 |
Correct |
308 ms |
18176 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
120 ms |
8220 KB |
Output is correct |
2 |
Correct |
131 ms |
8124 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
451 ms |
31804 KB |
Output is correct |
2 |
Correct |
542 ms |
31800 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
31 ms |
976 KB |
Output is correct |
2 |
Correct |
30 ms |
980 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
480 ms |
32632 KB |
Output is correct |
2 |
Correct |
588 ms |
32436 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
305 ms |
6404 KB |
Output is correct |
2 |
Correct |
305 ms |
6392 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
340 KB |
Output is correct |
2 |
Correct |
3 ms |
340 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
719 ms |
37740 KB |
Output is correct |
2 |
Correct |
830 ms |
37796 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3362 ms |
48848 KB |
Output is correct |
2 |
Correct |
3334 ms |
48920 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3298 ms |
56692 KB |
Output is correct |
2 |
Correct |
3275 ms |
60464 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
299 ms |
4268 KB |
Output is correct |
2 |
Correct |
317 ms |
4204 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3671 ms |
80192 KB |
Output is correct |
2 |
Correct |
3783 ms |
88216 KB |
Output is correct |