#include <vector>
#include <algorithm>
#include <iostream>
#include <set>
#include <cmath>
#include <map>
#include <random>
#include <cassert>
#include <ctime>
#include <bitset>
#include <stack>
#include <cstdlib>
#include <queue>
#include <stdint.h>
#include <vector>
#include <cassert>
#include <numeric>
#include <iostream>
#include <algorithm>
#include <functional>
#include <cstdio>
#include <limits.h>
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
using namespace std;
struct Domino {
pair<int, int> from, to;
int64_t cost;
bool operator<(const Domino &d1) const {
if (this->cost != d1.cost) return (this->cost > d1.cost);
if (this->from != d1.from) return (this->from < d1.from);
if (this->to != d1.to) return (this->to < d1.to);
return false;
}
};
class Graph {
public:
vector<int64_t> weight;
vector<vector<int>> adj;
vector<int64_t> dp;
void add_edge(int u, int v) {
adj[u][v] = adj[v][u] = 1;
}
Graph(int n) {
adj.resize(n);
for (int i = 0; i < n; i++) {
adj[i].assign(n, 0);
}
}
void solve(int k, bool b) {
dp.assign((1 << (int) adj.size()), 0);
for (int i = 1; i < dp.size(); i++) {
if (__builtin_popcount(i) > k) {
continue;
}
int x = i;
bool fine = true;
dp[0] = true;
while (x != 0) {
if (!dp[i - (1 << __builtin_ctzll(x))]) {
fine = false;
break;
}
x = x & (x - 1);
}
dp[0] = false;
if (!fine) {
continue;
}
if (__builtin_popcount(i) == 2) {
if (!adj[(int)log2(i)][(int)log2(i & -i)]) {
continue;
}
}
dp[i] = dp[i - (1 << (int)log2(i))] + weight[(int)log2(i)];
}
if (b) return;
for (int i = 1; i < dp.size(); i++) {
int x = i;
while (x != 0) {
dp[i] = max(dp[i], dp[i - (1 << __builtin_ctzll(x))]);
x = x & (x - 1);
}
}
}
};
int main() {
//freopen("balancing.in", "r", stdin);
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n, m;
cin >> n >> m;
int64_t grid[n][n];
int64_t sm = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> grid[i][j];
sm += grid[i][j];
}
}
vector<Domino> dominoes;
vector<pair<int, int>> pos;
pos.emplace_back(1, 0);
pos.emplace_back(0, 1);
for (int i = 0; i < n; i++) {
for (auto &p: pos) {
if (i + p.first < 0 || i + p.first == n) continue;
for (int j = 0; j < n; j++) {
if (j + p.second < 0 || j + p.second == n) continue;
dominoes.push_back({{i, j}, {i + p.first, j + p.second}, grid[i][j] + grid[i + p.first][j + p.second]});
}
}
}
nth_element(dominoes.begin(), dominoes.begin() + min(7 * (m - 1) + 5, 48), dominoes.end());
dominoes.resize(min(7 * (m - 1) + 5, 48));
vector<pair<int64_t, pair<Domino, Domino>>> edges;
for (auto &d1: dominoes) {
for (auto &d2: dominoes) {
set<pair<int, int>> s;
s.insert(d1.from), s.insert(d1.to), s.insert(d2.from), s.insert(d2.to);
if (s.size() != 4) continue;
edges.push_back({d1.cost + d2.cost, {d1, d2}});
}
}
set<Domino> mySet;
for (auto &p: edges) {
mySet.insert(p.second.first), mySet.insert(p.second.second);
}
map<Domino, int> myMap;
int cntr = 0;
vector<int64_t> weights;
for (Domino d: mySet) {
weights.push_back(d.cost);
myMap[d] = cntr++;
}
Graph gr(cntr), gr1(cntr / 2), gr2(cntr - cntr / 2);
gr.weight = weights;
for (int i = 0; i < cntr / 2; i++) gr1.weight.push_back(weights[i]);
for (int i = cntr / 2; i < cntr; i++) gr2.weight.push_back(weights[i]);
for (auto &e: edges) {
gr.add_edge(myMap[e.second.first], myMap[e.second.second]);
if (myMap[e.second.first] < cntr / 2 && myMap[e.second.second] < cntr / 2)
gr1.add_edge(myMap[e.second.second], myMap[e.second.first]);
if (myMap[e.second.first] >= cntr / 2 && myMap[e.second.second] >= cntr / 2)
gr2.add_edge(myMap[e.second.second] - cntr / 2, myMap[e.second.first] - cntr / 2);
}
gr1.solve(m, true);
int64_t myMax = 0;
vector<int> cnt[m + 1];
for (int i = 1; i < gr1.dp.size(); i++) {
if (gr1.dp[i] != 0) cnt[__builtin_popcount(i)].push_back(i);
}
for (int pc = 1; pc <= m; pc++) {
gr2.solve(m - pc, false);
for (int i: cnt[pc]) {
vector<int> nodes;
for (int j = 0; j < gr1.adj.size(); j++) {
if (i & (1 << j)) {
nodes.push_back(j);
}
}
int tot = 0;
for (int j = 0; j < gr2.adj.size(); j++) {
bool fine = true;
for (int k: nodes) {
if (!gr.adj[j + cntr / 2][k]) {
fine = false;
break;
}
}
if (fine) {
tot += (1 << j);
}
}
myMax = max(gr2.dp[tot] + gr1.dp[i], myMax);
}
}
gr1.solve(m, false);
myMax = max(myMax, gr1.dp.back());
cout << sm - myMax;
}
Compilation message
domino.cpp:25: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
25 | #pragma GCC optimization ("O3")
|
domino.cpp:26: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
26 | #pragma GCC optimization ("unroll-loops")
|
domino.cpp: In member function 'void Graph::solve(int, bool)':
domino.cpp:61:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
61 | for (int i = 1; i < dp.size(); i++) {
| ~~^~~~~~~~~~~
domino.cpp:87:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
87 | for (int i = 1; i < dp.size(); i++) {
| ~~^~~~~~~~~~~
domino.cpp: In function 'int main()':
domino.cpp:162:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
162 | for (int i = 1; i < gr1.dp.size(); i++) {
| ~~^~~~~~~~~~~~~~~
domino.cpp:169:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
169 | for (int j = 0; j < gr1.adj.size(); j++) {
| ~~^~~~~~~~~~~~~~~~
domino.cpp:175:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
175 | for (int j = 0; j < gr2.adj.size(); j++) {
| ~~^~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
35 ms |
14648 KB |
Output is correct |
2 |
Correct |
32 ms |
14604 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
596 KB |
Output is correct |
2 |
Correct |
1 ms |
596 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
539 ms |
228664 KB |
Output is correct |
2 |
Correct |
491 ms |
228768 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
340 KB |
Output is correct |
2 |
Correct |
1 ms |
340 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
332 ms |
215036 KB |
Output is correct |
2 |
Correct |
294 ms |
214932 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
140 ms |
57504 KB |
Output is correct |
2 |
Correct |
124 ms |
57484 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
522 ms |
228712 KB |
Output is correct |
2 |
Correct |
470 ms |
228760 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
182 ms |
17320 KB |
Output is correct |
2 |
Correct |
165 ms |
17060 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
709 ms |
236264 KB |
Output is correct |
2 |
Correct |
647 ms |
235972 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3778 ms |
200220 KB |
Output is correct |
2 |
Correct |
3918 ms |
198284 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
340 KB |
Output is correct |
2 |
Correct |
2 ms |
340 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Execution timed out |
4090 ms |
418924 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Execution timed out |
4086 ms |
266576 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Execution timed out |
4086 ms |
328520 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
213 ms |
16932 KB |
Output is correct |
2 |
Correct |
229 ms |
16940 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Execution timed out |
4115 ms |
492656 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |