#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<int, int>
#define sz(x) (int)x.size()
#define f first
#define s second
/**
* The challenge of the problem is to know which edges we want to "backtrack" on (meaning we pass an edge twice).
* It is key that we realize the given graph is a tree, which means we can use tree DP.
*
* Let dp[i][j][0/1] = the min cost to visit j nodes in subtree of i, such that 0 = we don't return back to i, 1 = we return back to i
*/
struct edge{
int to, c;
};
const int MAXN = 10001;
int n, k, x, ss[MAXN], dp[MAXN][MAXN][2];
vector<edge> arr[MAXN];
void subtreeSize(int at, int par){
ss[at] = 1;
for (edge i : arr[at]){
if (i.to != par){
subtreeSize(i.to, at);
ss[at] += ss[i.to];
}
}
}
void dfs(int at, int par){
// try to "tack on" the answer of the children of at
int currSize = 1;
for (edge i : arr[at]){
if (i.to != par){
dfs(i.to, at);
// combine the new subtree with the existing subtree of at
for (int atSize=currSize; atSize>=1; atSize--){
for (int newSize=ss[i.to]; newSize>=1; newSize--){
if (atSize + newSize > k){
continue;
}
dp[at][atSize + newSize][0] = min({dp[at][atSize + newSize][0], dp[at][atSize][1] + dp[i.to][newSize][0] + i.c, dp[at][atSize][0] + dp[i.to][newSize][1] + 2*i.c});
dp[at][atSize + newSize][1] = min(dp[at][atSize + newSize][1], dp[at][atSize][1] + dp[i.to][newSize][1] + 2*i.c);
}
}
// // copy over data
// for (int atSize=1; atSize<=currSize; atSize++){
// for (int newSize=1; newSize<=ss[i.to]; newSize++){
// if (atSize + newSize > k){
// continue;
// }
// dp[at][atSize + newSize][0] = min(dp[at][atSize + newSize][0], dp2[at][atSize + newSize][0]);
// dp[at][atSize + newSize][1] = min(dp[at][atSize + newSize][1], dp2[at][atSize + newSize][1]);
// }
// }
// for (int atSize=1; atSize<=currSize; atSize++){
// for (int newSize=1; newSize<=ss[i.to]; newSize++){
// if (atSize + newSize > k){
// continue;
// }
// dp2[at][atSize + newSize][0] = dp2[at][atSize + newSize][1] = INT_MAX;
// }
// }
currSize += ss[i.to];
}
}
}
int main(){
cin.tie(0); ios_base::sync_with_stdio(0);
// freopen("file.in", "r", stdin);
// freopen("file.out", "w", stdout);
cin >> n >> k >> x;
x--;
for (int i=0; i<n-1; i++){
int a, b, c;
cin >> a >> b >> c;
a--; b--;
arr[a].push_back({b, c});
arr[b].push_back({a, c});
}
for (int i=0; i<MAXN; i++){
for (int j=0; j<MAXN; j++){
if (j > 1){
dp[i][j][0] = dp[i][j][1] = INT_MAX;
}
// dp2[i][j][0] = dp2[i][j][1] = INT_MAX;
}
}
subtreeSize(x, -1);
dfs(x, -1);
cout << dp[x][k][0] << "\n";
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
331 ms |
783492 KB |
Output is correct |
2 |
Correct |
334 ms |
783436 KB |
Output is correct |
3 |
Correct |
353 ms |
783488 KB |
Output is correct |
4 |
Correct |
336 ms |
783352 KB |
Output is correct |
5 |
Correct |
346 ms |
783476 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
398 ms |
783896 KB |
Output is correct |
2 |
Correct |
404 ms |
783804 KB |
Output is correct |
3 |
Correct |
399 ms |
784232 KB |
Output is correct |
4 |
Correct |
399 ms |
783948 KB |
Output is correct |
5 |
Correct |
392 ms |
783852 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
398 ms |
783896 KB |
Output is correct |
2 |
Correct |
404 ms |
783804 KB |
Output is correct |
3 |
Correct |
399 ms |
784232 KB |
Output is correct |
4 |
Correct |
399 ms |
783948 KB |
Output is correct |
5 |
Correct |
392 ms |
783852 KB |
Output is correct |
6 |
Correct |
398 ms |
783972 KB |
Output is correct |
7 |
Correct |
398 ms |
784072 KB |
Output is correct |
8 |
Correct |
412 ms |
783820 KB |
Output is correct |
9 |
Correct |
410 ms |
783924 KB |
Output is correct |
10 |
Correct |
396 ms |
783872 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
331 ms |
783492 KB |
Output is correct |
2 |
Correct |
334 ms |
783436 KB |
Output is correct |
3 |
Correct |
353 ms |
783488 KB |
Output is correct |
4 |
Correct |
336 ms |
783352 KB |
Output is correct |
5 |
Correct |
346 ms |
783476 KB |
Output is correct |
6 |
Correct |
398 ms |
783896 KB |
Output is correct |
7 |
Correct |
404 ms |
783804 KB |
Output is correct |
8 |
Correct |
399 ms |
784232 KB |
Output is correct |
9 |
Correct |
399 ms |
783948 KB |
Output is correct |
10 |
Correct |
392 ms |
783852 KB |
Output is correct |
11 |
Correct |
398 ms |
783972 KB |
Output is correct |
12 |
Correct |
398 ms |
784072 KB |
Output is correct |
13 |
Correct |
412 ms |
783820 KB |
Output is correct |
14 |
Correct |
410 ms |
783924 KB |
Output is correct |
15 |
Correct |
396 ms |
783872 KB |
Output is correct |
16 |
Correct |
411 ms |
783820 KB |
Output is correct |
17 |
Correct |
444 ms |
784144 KB |
Output is correct |
18 |
Correct |
404 ms |
784308 KB |
Output is correct |
19 |
Correct |
422 ms |
783960 KB |
Output is correct |
20 |
Correct |
409 ms |
784136 KB |
Output is correct |
21 |
Correct |
465 ms |
784280 KB |
Output is correct |
22 |
Correct |
462 ms |
784204 KB |
Output is correct |
23 |
Correct |
494 ms |
784060 KB |
Output is correct |
24 |
Correct |
459 ms |
784076 KB |
Output is correct |
25 |
Correct |
467 ms |
784368 KB |
Output is correct |