# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
532807 |
2022-03-04T01:09:06 Z |
wiwiho |
Fences (JOI18_fences) |
C++14 |
|
268 ms |
3516 KB |
#include <bits/stdc++.h>
#include <bits/extc++.h>
#define StarBurstStream ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define iter(a) a.begin(), a.end()
#define riter(a) a.rbegin(), a.rend()
#define lsort(a) sort(iter(a))
#define gsort(a) sort(riter(a))
#define pb(a) push_back(a)
#define eb(a) emplace_back(a)
#define pf(a) push_front(a)
#define ef(a) emplace_front(a)
#define pob pop_back()
#define pof pop_front()
#define mp(a, b) make_pair(a, b)
#define F first
#define S second
#define mt make_tuple
#define gt(t, i) get<i>(t)
#define tomax(a, b) ((a) = max((a), (b)))
#define tomin(a, b) ((a) = min((a), (b)))
#define topos(a) ((a) = (((a) % MOD + MOD) % MOD))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define printv(a, b) {bool pvaspace=false; \
for(auto pva : a){ \
if(pvaspace) b << " "; pvaspace=true;\
b << pva;\
}\
b << "\n";}
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;
using tiii = tuple<int, int, int>;
const ll MOD = 1000000007;
const ll MAX = 2147483647;
template<typename A, typename B>
ostream& operator<<(ostream& o, pair<A, B> p){
return o << '(' << p.F << ',' << p.S << ')';
}
ll ifloor(ll a, ll b){
if(b < 0) a *= -1, b *= -1;
if(a < 0) return (a - b + 1) / b;
else return a / b;
}
ll iceil(ll a, ll b){
if(b < 0) a *= -1, b *= -1;
if(a > 0) return (a + b - 1) / b;
else return a / b;
}
void waassert(bool b){
if(b) return;
cout << "WA\n";
exit(0);
}
using pdd = pair<ld, ld>;
ld eps = 1e-9;
pdd operator+(pdd a, pdd b){
return mp(a.F + b.F, a.S + b.S);
}
pdd operator-(pdd a, pdd b){
return mp(a.F - b.F, a.S - b.S);
}
ld dot(pdd a, pdd b){
return a.F * b.F + a.S * b.S;
}
ld cross(pdd a, pdd b){
return a.F * b.S - a.S * b.F;
}
ld abs2(pdd a){
return a.F * a.F + a.S * a.S;
}
ld abs(pdd a){
return sqrt(abs2(a));
}
pdd operator*(ld i, pdd p){
return mp(i * p.F, i * p.S);
}
int ori(pdd a, pdd b){
if(abs(cross(a, b)) <= eps) return 0;
else if(cross(a, b) > 0) return 1;
else return -1;
}
bool intersect(pdd a, pdd b, pdd c, pdd d){
return ori(b - a, c - a) * ori(b - a, d - a) < 0 && ori(d - c, a - c) * ori(d - c, b - c) < 0;
}
pdd intersection(pdd a, pdd b, pdd c, pdd d){
ld t1 = abs(cross(c - a, d - a));
ld t2 = abs(cross(c - b, d - b));
return 1 / (t1 + t2) * (t2 * a + t1 * b);
}
bool canproj(pdd p, pdd a, pdd b){
return dot(b - a, p - a) >= 0 && dot(a - b, p - b) >= 0;
}
pdd getproj(pdd p, pdd a, pdd b){
if(abs2(a - b) <= eps) return a;
return a + dot(p - a, b - a) / abs2(b - a) * (b - a);
}
pdd v1 = mp(0, 0), v2 = mp(48763, 3234234);
struct Line{
pdd a, b;
};
struct edge{
int to;
ld w;
int f;
};
ostream& operator<<(ostream& o, edge e){
return o << '(' << e.to << ',' << e.w << ',' << e.f << ')';
}
int n;
ld SS;
vector<Line> border;
vector<Line> e;
vector<vector<edge>> g;
vector<pdd> midp;
vector<bool> hmid;
void init(){
cin >> n >> SS;
e.resize(n);
for(int i = 0; i < n; i++){
cin >> e[i].a.F >> e[i].a.S >> e[i].b.F >> e[i].b.S;
}
border.eb(Line({mp(SS, SS), mp(SS, -SS)}));
border.eb(Line({mp(-SS, -SS), mp(SS, -SS)}));
border.eb(Line({mp(-SS, -SS), mp(-SS, SS)}));
border.eb(Line({mp(SS, SS), mp(-SS, SS)}));
border.eb(Line({mp(SS, -SS), mp(-SS, SS)}));
border.eb(Line({mp(-SS, -SS), mp(SS, SS)}));
e.eb(Line({mp(SS, SS), mp(SS, SS)}));
e.eb(Line({mp(SS, -SS), mp(SS, -SS)}));
e.eb(Line({mp(-SS, SS), mp(-SS, SS)}));
e.eb(Line({mp(-SS, -SS), mp(-SS, -SS)}));
n += 4;
g.resize(2 * n);
midp.resize(n);
hmid.resize(n);
for(int i = 0; i < n; i++){
if(!intersect(e[i].a, e[i].b, v1, v2)) continue;
hmid[i] = true;
midp[i] = intersection(e[i].a, e[i].b, v1, v2);
//cerr << "mid " << i << " " << e[i].a << " " << e[i].b << " " << midp[i] << "\n";
}
for(int i = 0; i < n; i++){
g[2 * i].eb(edge({2 * i + 1, 0, hmid[i]}));
g[2 * i + 1].eb(edge({2 * i, 0, hmid[i]}));
}
}
bool check(pdd a, pdd b){
for(auto i : border){
if(intersect(a, b, i.a, i.b)) return false;
}
return true;
}
int district(int x, pdd a){
if(!hmid[x]) return 0;
return a < midp[x];
}
bool foxyy(pdd a, pdd b){
return intersect(a, b, v1, v2);
}
void addedge(int x, pdd a, int y, pdd b){
if(!check(a, b)){
//cerr << "qq " << a << " " << b << "\n";
return;
}
int av = 2 * x + district(x, a);
int bv = 2 * y + district(y, b);
//cerr << "addedge " << x << " " << av << " " << y << " " << bv << "\n";
g[av].eb(edge({bv, abs(a - b), foxyy(a, b)}));
g[bv].eb(edge({av, abs(a - b), foxyy(a, b)}));
//cerr << "addedge " << a << " " << b << " " << abs(a - b) << " " << foxyy(a, b) << "\n";
}
void tryproj(int x, pdd p, int y, pdd a, pdd b){
if(!canproj(p, a, b)) return;
//cerr << "canproj " << x << " " << p << " " << y << " " << getproj(p, a, b) << "\n";
addedge(x, p, y, getproj(p, a, b));
}
void buildedges(int x, int y){
addedge(x, e[x].a, y, e[y].a);
addedge(x, e[x].b, y, e[y].a);
addedge(x, e[x].a, y, e[y].b);
addedge(x, e[x].b, y, e[y].b);
tryproj(x, e[x].a, y, e[y].a, e[y].b);
tryproj(x, e[x].b, y, e[y].a, e[y].b);
tryproj(y, e[y].a, x, e[x].a, e[x].b);
tryproj(y, e[y].b, x, e[x].a, e[x].b);
}
struct info{
ld d;
int v;
int f;
bool operator<(info b) const{
return d > b.d;
}
};
ld calc(int s){
std::priority_queue<info> pq;
vector<vector<ld>> dis(2, vector<ld>(2 * n, 1e20));
dis[0][s] = 0;
pq.push(info({0, s, 0}));
vector<vector<bool>> vst(2, vector<bool>(2 * n));
//int cnt = 0;
while(!pq.empty()){
ld d = pq.top().d;
int v = pq.top().v, f = pq.top().f;
pq.pop();
if(vst[f][v] || abs(d - dis[f][v]) > eps) continue;
vst[f][v] = true;
for(auto i : g[v]){
int nf = f ^ i.f;
//cnt++;
//assert(cnt <= 1e5);
if(vst[nf][i.to] || d + i.w >= dis[nf][i.to] - eps) continue;
dis[nf][i.to] = d + i.w;
pq.push(info({d + i.w, i.to, nf}));
}
}
//cerr << "calc " << s << " " << dis[1][s] << "\n";
return dis[1][s];
}
int main(){
StarBurstStream
init();
for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j++) buildedges(i, j);
}
/*cerr << "graph\n";
for(int i = 0; i < ts; i++){
cerr << i << " " << pos[i] << " ";
printv(g[i], cerr);
}*/
ld ans = 1e20;
for(int i = 0; i < 2 * n; i++){
ans = min(ans, calc(i));
}
cout << fixed << setprecision(20) << ans << "\n";
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
216 KB |
Output is correct |
2 |
Correct |
1 ms |
316 KB |
Output is correct |
3 |
Correct |
1 ms |
308 KB |
Output is correct |
4 |
Correct |
1 ms |
312 KB |
Output is correct |
5 |
Correct |
1 ms |
308 KB |
Output is correct |
6 |
Correct |
1 ms |
312 KB |
Output is correct |
7 |
Correct |
1 ms |
312 KB |
Output is correct |
8 |
Correct |
1 ms |
312 KB |
Output is correct |
9 |
Correct |
1 ms |
332 KB |
Output is correct |
10 |
Correct |
1 ms |
332 KB |
Output is correct |
11 |
Correct |
1 ms |
332 KB |
Output is correct |
12 |
Correct |
1 ms |
204 KB |
Output is correct |
13 |
Correct |
1 ms |
332 KB |
Output is correct |
14 |
Correct |
1 ms |
332 KB |
Output is correct |
15 |
Correct |
1 ms |
332 KB |
Output is correct |
16 |
Correct |
1 ms |
332 KB |
Output is correct |
17 |
Correct |
1 ms |
332 KB |
Output is correct |
18 |
Correct |
1 ms |
332 KB |
Output is correct |
19 |
Correct |
1 ms |
332 KB |
Output is correct |
20 |
Correct |
1 ms |
332 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
216 KB |
Output is correct |
2 |
Correct |
1 ms |
316 KB |
Output is correct |
3 |
Correct |
1 ms |
308 KB |
Output is correct |
4 |
Correct |
1 ms |
312 KB |
Output is correct |
5 |
Correct |
1 ms |
308 KB |
Output is correct |
6 |
Correct |
1 ms |
312 KB |
Output is correct |
7 |
Correct |
1 ms |
312 KB |
Output is correct |
8 |
Correct |
1 ms |
312 KB |
Output is correct |
9 |
Correct |
1 ms |
332 KB |
Output is correct |
10 |
Correct |
1 ms |
332 KB |
Output is correct |
11 |
Correct |
1 ms |
332 KB |
Output is correct |
12 |
Correct |
1 ms |
204 KB |
Output is correct |
13 |
Correct |
1 ms |
332 KB |
Output is correct |
14 |
Correct |
1 ms |
332 KB |
Output is correct |
15 |
Correct |
1 ms |
332 KB |
Output is correct |
16 |
Correct |
1 ms |
332 KB |
Output is correct |
17 |
Correct |
1 ms |
332 KB |
Output is correct |
18 |
Correct |
1 ms |
332 KB |
Output is correct |
19 |
Correct |
1 ms |
332 KB |
Output is correct |
20 |
Correct |
1 ms |
332 KB |
Output is correct |
21 |
Correct |
1 ms |
332 KB |
Output is correct |
22 |
Correct |
1 ms |
332 KB |
Output is correct |
23 |
Correct |
1 ms |
332 KB |
Output is correct |
24 |
Correct |
1 ms |
308 KB |
Output is correct |
25 |
Correct |
1 ms |
332 KB |
Output is correct |
26 |
Correct |
1 ms |
332 KB |
Output is correct |
27 |
Correct |
1 ms |
332 KB |
Output is correct |
28 |
Correct |
1 ms |
332 KB |
Output is correct |
29 |
Correct |
1 ms |
332 KB |
Output is correct |
30 |
Correct |
1 ms |
332 KB |
Output is correct |
31 |
Correct |
1 ms |
332 KB |
Output is correct |
32 |
Correct |
1 ms |
308 KB |
Output is correct |
33 |
Correct |
1 ms |
332 KB |
Output is correct |
34 |
Correct |
1 ms |
332 KB |
Output is correct |
35 |
Correct |
1 ms |
332 KB |
Output is correct |
36 |
Correct |
1 ms |
332 KB |
Output is correct |
37 |
Correct |
1 ms |
332 KB |
Output is correct |
38 |
Correct |
1 ms |
332 KB |
Output is correct |
39 |
Correct |
1 ms |
332 KB |
Output is correct |
40 |
Correct |
1 ms |
312 KB |
Output is correct |
41 |
Correct |
1 ms |
332 KB |
Output is correct |
42 |
Correct |
1 ms |
308 KB |
Output is correct |
43 |
Correct |
1 ms |
308 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
216 KB |
Output is correct |
2 |
Correct |
1 ms |
316 KB |
Output is correct |
3 |
Correct |
1 ms |
308 KB |
Output is correct |
4 |
Correct |
1 ms |
312 KB |
Output is correct |
5 |
Correct |
1 ms |
308 KB |
Output is correct |
6 |
Correct |
1 ms |
312 KB |
Output is correct |
7 |
Correct |
1 ms |
312 KB |
Output is correct |
8 |
Correct |
1 ms |
312 KB |
Output is correct |
9 |
Correct |
1 ms |
332 KB |
Output is correct |
10 |
Correct |
1 ms |
332 KB |
Output is correct |
11 |
Correct |
1 ms |
332 KB |
Output is correct |
12 |
Correct |
1 ms |
204 KB |
Output is correct |
13 |
Correct |
1 ms |
332 KB |
Output is correct |
14 |
Correct |
1 ms |
332 KB |
Output is correct |
15 |
Correct |
1 ms |
332 KB |
Output is correct |
16 |
Correct |
1 ms |
332 KB |
Output is correct |
17 |
Correct |
1 ms |
332 KB |
Output is correct |
18 |
Correct |
1 ms |
332 KB |
Output is correct |
19 |
Correct |
1 ms |
332 KB |
Output is correct |
20 |
Correct |
1 ms |
332 KB |
Output is correct |
21 |
Correct |
1 ms |
332 KB |
Output is correct |
22 |
Correct |
1 ms |
332 KB |
Output is correct |
23 |
Correct |
1 ms |
332 KB |
Output is correct |
24 |
Correct |
1 ms |
308 KB |
Output is correct |
25 |
Correct |
1 ms |
332 KB |
Output is correct |
26 |
Correct |
1 ms |
332 KB |
Output is correct |
27 |
Correct |
1 ms |
332 KB |
Output is correct |
28 |
Correct |
1 ms |
332 KB |
Output is correct |
29 |
Correct |
1 ms |
332 KB |
Output is correct |
30 |
Correct |
1 ms |
332 KB |
Output is correct |
31 |
Correct |
1 ms |
332 KB |
Output is correct |
32 |
Correct |
1 ms |
308 KB |
Output is correct |
33 |
Correct |
1 ms |
332 KB |
Output is correct |
34 |
Correct |
1 ms |
332 KB |
Output is correct |
35 |
Correct |
1 ms |
332 KB |
Output is correct |
36 |
Correct |
1 ms |
332 KB |
Output is correct |
37 |
Correct |
1 ms |
332 KB |
Output is correct |
38 |
Correct |
1 ms |
332 KB |
Output is correct |
39 |
Correct |
1 ms |
332 KB |
Output is correct |
40 |
Correct |
1 ms |
312 KB |
Output is correct |
41 |
Correct |
1 ms |
332 KB |
Output is correct |
42 |
Correct |
1 ms |
308 KB |
Output is correct |
43 |
Correct |
1 ms |
308 KB |
Output is correct |
44 |
Correct |
268 ms |
3452 KB |
Output is correct |
45 |
Correct |
175 ms |
3024 KB |
Output is correct |
46 |
Correct |
136 ms |
2284 KB |
Output is correct |
47 |
Correct |
137 ms |
1872 KB |
Output is correct |
48 |
Correct |
224 ms |
3516 KB |
Output is correct |
49 |
Correct |
202 ms |
3312 KB |
Output is correct |
50 |
Correct |
182 ms |
2536 KB |
Output is correct |
51 |
Correct |
131 ms |
2000 KB |
Output is correct |
52 |
Correct |
154 ms |
2408 KB |
Output is correct |
53 |
Correct |
165 ms |
2372 KB |
Output is correct |
54 |
Correct |
170 ms |
2512 KB |
Output is correct |
55 |
Correct |
179 ms |
2828 KB |
Output is correct |
56 |
Correct |
197 ms |
2640 KB |
Output is correct |
57 |
Correct |
171 ms |
2280 KB |
Output is correct |
58 |
Correct |
147 ms |
2360 KB |
Output is correct |
59 |
Correct |
161 ms |
2516 KB |
Output is correct |
60 |
Correct |
196 ms |
2816 KB |
Output is correct |
61 |
Correct |
178 ms |
2896 KB |
Output is correct |
62 |
Correct |
1 ms |
336 KB |
Output is correct |
63 |
Correct |
2 ms |
336 KB |
Output is correct |
64 |
Correct |
212 ms |
2832 KB |
Output is correct |
65 |
Correct |
246 ms |
2200 KB |
Output is correct |
66 |
Correct |
171 ms |
1852 KB |
Output is correct |
67 |
Correct |
203 ms |
3372 KB |
Output is correct |
68 |
Correct |
182 ms |
3240 KB |
Output is correct |
69 |
Correct |
219 ms |
3084 KB |
Output is correct |
70 |
Correct |
175 ms |
2768 KB |
Output is correct |
71 |
Correct |
190 ms |
2904 KB |
Output is correct |
72 |
Correct |
132 ms |
2128 KB |
Output is correct |