Submission #532282

# Submission time Handle Problem Language Result Execution time Memory
532282 2022-03-02T16:43:31 Z Alex_tz307 Cats or Dogs (JOI18_catdog) C++17
100 / 100
616 ms 22136 KB
#include <bits/stdc++.h>
#include "catdog.h"
#define INF 0x3f3f3f3f
 
using namespace std;

const int kN = 1e5;
vector<int> g[1 + kN];
int labels, sz[1 + kN], p[1 + kN], heavySon[1 + kN], chainTop[1 + kN], label[1 + kN], down[1 + kN], last[1 + kN][2], sum[1 + kN][2];
short col[1 + kN];
 
void minSelf(int &x, int y) {
  if (y < x) {
    x = y;
  }
}
 
struct node {
  int dp[2][2];
 
  node() {
    for (int i = 0; i < 2; ++i) {
      for (int j = 0; j < 2; ++j) {
        dp[i][j] = INF;
      }
    }
  }
 
  void init(int pos, int c) {
    dp[0][1] = dp[1][0] = INF;
    for (int i = 0; i < 2; ++i) {
      if (i != c && c != 2) {
        dp[i][i] = INF;
      } else {
        dp[i][i] = sum[pos][i];
      }
    }
  }
 
  node operator + (const node &rhs) const {
    node ret;
    for (int i = 0; i < 2; ++i) {
      for (int j = 0; j < 2; ++j) {
        ret.dp[i][j] = INF;
      }
    }
    for (int a = 0; a < 2; ++a) {
      for (int b = 0; b < 2; ++b) {
        for (int c = 0; c < 2; ++c) {
          for (int d = 0; d < 2; ++d) {
            minSelf(ret.dp[a][d], dp[a][b] + rhs.dp[c][d] + (b != c));
          }
        }
      }
    }
    return ret;
  }
};
 
struct ST {
  int n;
  vector<node> t;
 
  void init(int N) {
    n = N;
    int dim = 1;
    while (dim < n) {
      dim *= 2;
    }
    t.resize(dim * 2);
  }
 
  void build(int x, int lx, int rx) {
    if (lx == rx) {
      t[x].init(lx, 2);
      return;
    }
    int mid = (lx + rx) / 2;
    build(x * 2, lx, mid);
    build(x * 2 + 1, mid + 1, rx);
    t[x] = t[x * 2] + t[x * 2 + 1];
  }
 
  void update(int x, int lx, int rx, int pos, int c) {
    if (lx == rx) {
      t[x].init(pos, c);
      return;
    }
    int mid = (lx + rx) / 2;
    if (pos <= mid) {
      update(x * 2, lx, mid, pos, c);
    } else {
      update(x * 2 + 1, mid + 1, rx, pos, c);
    }
    t[x] = t[x * 2] + t[x * 2 + 1];
  }
 
  void update(int pos, int c) {
    update(1, 1, n, pos, c);
  }
 
  node query(int x, int lx, int rx, int st, int dr) {
    if (st <= lx && rx <= dr) {
      return t[x];
    }
    int mid = (lx + rx) / 2;
    if (st <= mid && mid < dr) {
      return query(x * 2, lx, mid, st, dr) + query(x * 2 + 1, mid + 1, rx, st, dr);
    }
    if (st <= mid) {
      return query(x * 2, lx, mid, st, dr);
    }
    return query(x * 2 + 1, mid + 1, rx, st, dr);
  }
 
  node query(int st, int dr) {
    return query(1, 1, n, st, dr);
  }
} t;
 
void dfs1(int u) {
  sz[u] = 1;
  chainTop[u] = u;
  for (int v : g[u]) {
    if (v != p[u]) {
      p[v] = u;
      dfs1(v);
      if (sz[heavySon[u]] < sz[v]) {
        heavySon[u] = v;
      }
      sz[u] += sz[v];
    }
  }
}
 
void dfs2(int u) {
  label[u] = ++labels;
  down[chainTop[u]] = u;
  if (heavySon[u] == 0) {
    return;
  }
  chainTop[heavySon[u]] = chainTop[u];
  dfs2(heavySon[u]);
  for (int v : g[u]) {
    if (v != p[u] && v != heavySon[u]) {
      dfs2(v);
    }
  }
}
 
int getDp(node x, int i) {
  int best = INF;
  for (int j = 0; j < 2; ++j) {
    minSelf(best, x.dp[i][j]);
    minSelf(best, x.dp[i ^ 1][j] + 1);
  }
  return best;
}
 
node update(int v) {
  t.update(label[v], col[v]);
  int root = chainTop[v];
  node chain = t.query(label[root], label[down[root]]);
  if (root == 1) {
    return chain;
  }
  for (int i = 0; i < 2; ++i) {
    sum[label[p[root]]][i] -= last[root][i];
    last[root][i] = getDp(chain, i);
    sum[label[p[root]]][i] += last[root][i];
  }
  return update(p[root]);
}
 
void initialize(int N, vector<int> A, vector<int> B) {
  for (int i = 0; i < N - 1; ++i) {
    g[A[i]].emplace_back(B[i]);
    g[B[i]].emplace_back(A[i]);
  }
  for (int v = 1; v <= N; ++v) {
    col[v] = 2;
  }
  dfs1(1);
  dfs2(1);
  t.init(N);
  t.build(1, 1, N);
}
 
int cat(int v) {
  col[v] = 0;
  node ret = update(v);
  return min(getDp(ret, 0), getDp(ret, 1));
}
 
int dog(int v) {
  col[v] = 1;
  node ret = update(v);
  return min(getDp(ret, 0), getDp(ret, 1));
}
 
int neighbor(int v) {
  col[v] = 2;
  node ret = update(v);
  return min(getDp(ret, 0), getDp(ret, 1));
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 1 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 2 ms 2636 KB Output is correct
8 Correct 2 ms 2636 KB Output is correct
9 Correct 2 ms 2636 KB Output is correct
10 Correct 2 ms 2636 KB Output is correct
11 Correct 2 ms 2636 KB Output is correct
12 Correct 2 ms 2656 KB Output is correct
13 Correct 2 ms 2636 KB Output is correct
14 Correct 2 ms 2636 KB Output is correct
15 Correct 2 ms 2636 KB Output is correct
16 Correct 2 ms 2636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 1 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 2 ms 2636 KB Output is correct
8 Correct 2 ms 2636 KB Output is correct
9 Correct 2 ms 2636 KB Output is correct
10 Correct 2 ms 2636 KB Output is correct
11 Correct 2 ms 2636 KB Output is correct
12 Correct 2 ms 2656 KB Output is correct
13 Correct 2 ms 2636 KB Output is correct
14 Correct 2 ms 2636 KB Output is correct
15 Correct 2 ms 2636 KB Output is correct
16 Correct 2 ms 2636 KB Output is correct
17 Correct 3 ms 2764 KB Output is correct
18 Correct 3 ms 2764 KB Output is correct
19 Correct 3 ms 2764 KB Output is correct
20 Correct 2 ms 2636 KB Output is correct
21 Correct 2 ms 2636 KB Output is correct
22 Correct 2 ms 2636 KB Output is correct
23 Correct 3 ms 2764 KB Output is correct
24 Correct 3 ms 2764 KB Output is correct
25 Correct 3 ms 2636 KB Output is correct
26 Correct 3 ms 2636 KB Output is correct
27 Correct 2 ms 2636 KB Output is correct
28 Correct 2 ms 2764 KB Output is correct
29 Correct 3 ms 2788 KB Output is correct
30 Correct 2 ms 2636 KB Output is correct
31 Correct 2 ms 2764 KB Output is correct
32 Correct 2 ms 2636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 1 ms 2636 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 2 ms 2636 KB Output is correct
8 Correct 2 ms 2636 KB Output is correct
9 Correct 2 ms 2636 KB Output is correct
10 Correct 2 ms 2636 KB Output is correct
11 Correct 2 ms 2636 KB Output is correct
12 Correct 2 ms 2656 KB Output is correct
13 Correct 2 ms 2636 KB Output is correct
14 Correct 2 ms 2636 KB Output is correct
15 Correct 2 ms 2636 KB Output is correct
16 Correct 2 ms 2636 KB Output is correct
17 Correct 3 ms 2764 KB Output is correct
18 Correct 3 ms 2764 KB Output is correct
19 Correct 3 ms 2764 KB Output is correct
20 Correct 2 ms 2636 KB Output is correct
21 Correct 2 ms 2636 KB Output is correct
22 Correct 2 ms 2636 KB Output is correct
23 Correct 3 ms 2764 KB Output is correct
24 Correct 3 ms 2764 KB Output is correct
25 Correct 3 ms 2636 KB Output is correct
26 Correct 3 ms 2636 KB Output is correct
27 Correct 2 ms 2636 KB Output is correct
28 Correct 2 ms 2764 KB Output is correct
29 Correct 3 ms 2788 KB Output is correct
30 Correct 2 ms 2636 KB Output is correct
31 Correct 2 ms 2764 KB Output is correct
32 Correct 2 ms 2636 KB Output is correct
33 Correct 312 ms 9928 KB Output is correct
34 Correct 102 ms 10332 KB Output is correct
35 Correct 301 ms 8912 KB Output is correct
36 Correct 489 ms 15884 KB Output is correct
37 Correct 16 ms 6480 KB Output is correct
38 Correct 582 ms 16644 KB Output is correct
39 Correct 589 ms 16648 KB Output is correct
40 Correct 520 ms 16652 KB Output is correct
41 Correct 616 ms 16652 KB Output is correct
42 Correct 495 ms 16656 KB Output is correct
43 Correct 511 ms 16612 KB Output is correct
44 Correct 492 ms 16668 KB Output is correct
45 Correct 508 ms 16656 KB Output is correct
46 Correct 502 ms 16612 KB Output is correct
47 Correct 572 ms 16644 KB Output is correct
48 Correct 122 ms 13140 KB Output is correct
49 Correct 156 ms 14700 KB Output is correct
50 Correct 51 ms 5624 KB Output is correct
51 Correct 53 ms 7852 KB Output is correct
52 Correct 24 ms 5420 KB Output is correct
53 Correct 199 ms 15460 KB Output is correct
54 Correct 178 ms 8828 KB Output is correct
55 Correct 433 ms 13884 KB Output is correct
56 Correct 221 ms 9452 KB Output is correct
57 Correct 294 ms 15000 KB Output is correct
58 Correct 22 ms 7904 KB Output is correct
59 Correct 48 ms 6740 KB Output is correct
60 Correct 123 ms 13764 KB Output is correct
61 Correct 133 ms 14092 KB Output is correct
62 Correct 75 ms 12444 KB Output is correct
63 Correct 40 ms 11240 KB Output is correct
64 Correct 45 ms 12760 KB Output is correct
65 Correct 56 ms 19268 KB Output is correct
66 Correct 59 ms 6876 KB Output is correct
67 Correct 59 ms 15556 KB Output is correct
68 Correct 122 ms 19204 KB Output is correct
69 Correct 29 ms 4264 KB Output is correct
70 Correct 7 ms 2892 KB Output is correct
71 Correct 51 ms 10784 KB Output is correct
72 Correct 82 ms 17692 KB Output is correct
73 Correct 225 ms 22136 KB Output is correct
74 Correct 217 ms 18756 KB Output is correct
75 Correct 144 ms 22128 KB Output is correct
76 Correct 135 ms 20836 KB Output is correct
77 Correct 227 ms 19064 KB Output is correct