Submission #529797

#TimeUsernameProblemLanguageResultExecution timeMemory
529797happypotatoGap (APIO16_gap)C++17
30 / 100
39 ms1184 KiB
#include "gap.h" #include <bits/stdc++.h> #define ll long long using namespace std; ll mn, mx; ll st1(int n) { ll s = 0, t = 1e18; MinMax(s, t, &mn, &mx); ll ans = 0; for (ll i = 2; i <= n / 2; i++) { ll pmn = mn, pmx = mx; MinMax(mn + 1, mx - 1, &mn, &mx); ans = max(ans, mn - pmn); ans = max(ans, pmx - mx); } if (n % 2 == 1) { ll fin, fin2; MinMax(mn + 1, mx - 1, &fin, &fin2); ans = max(ans, fin - mn); ans = max(ans, mx - fin); } else { ans = max(ans, mx - mn); } return ans; } ll st2(int n) { /* Solution outline: Query(0, 1e18) -> n + 1 queries n - 2 items left, given a[1] and a[n] Idea: spilt the range into n - 1 by pigeonhole principle, at least 1 range has no items (and there definitely exists a range which is >= that range) Take max(min of right range - max of left range) */ ll s = 0, t = 1e18; MinMax(s, t, &mn, &mx); s = mn + 1; t = mx - 1; ll range = (t - s) + 1; range /= (n - 1); ll int rs = s, rt = s + range - 1; ll int prev = mn; ll int ans = 0; for (int i = 0; i < n - 2; i++) { MinMax(rs, rt, &mn, &mx); if (mn == -1) continue; ans = max(ans, mn - prev); prev = mx; rs += range; rt += range; } MinMax(rs, t, &mn, &mx); ans = max(ans, mn - prev); ans = max(ans, (t + 1) - mx); return ans; } long long findGap(int T, int N) { if (T == 1) return st1(N); else return st2(N); }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...