Submission #526170

# Submission time Handle Problem Language Result Execution time Memory
526170 2022-02-13T21:23:29 Z mjhmjh1104 Mountains and Valleys (CCO20_day1problem3) C++17
0 / 25
37 ms 50848 KB
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <cstdio>
#include <vector>
#include <utility>
#include <algorithm>
using namespace std;

struct Item {
    int posde;
    int negde;
    int ans;
    Item () {}
    Item (int posde, int negde, int ans): posde(posde), negde(negde), ans(ans) {}
} sp_split[19][500006];

struct MySet {
    int v[3];
    MySet() {
        v[0] = v[1] = v[2] = 0;
    }
    void push(int x) {
        auto t = min_element(v, v + 3);
        if (x > *t) *t = x;
    }
    void pop(int x) {
        *find(v, v + 3, x) = 0;
    }
    int first() {
        return *max_element(v, v + 3);
    }
    int second() {
        return v[0] + v[1] + v[2] - *min_element(v, v + 3);
    }
} lt_depth[500006], lt_dist[500006];

int n, m;
vector<int> tree[500006], child[500006];
vector<pair<int, int>> adj[500006];
int depth[500006], sp[19][500006], sp_dist[19][500006];
int max_depth[500006], rev_max_depth[500006], dist[500006], rev_dist[500006];
int prev_dist[500006], prev_depth[500006][2];

inline Item query_sp_res(int A, int x) {
    if (A == -1) return Item();
    Item ret = { prev_depth[x][0] + depth[x], prev_depth[x][0] - depth[x], (int)-1e9 };
    if (A == x) return ret;
    for (int t = 18; t >= 0; t--) if (sp[t][x] != -1 && depth[sp[t][x]] > depth[A]) {
        ret.ans = max({ sp_split[t][x].ans, ret.ans, sp_split[t][x].posde + ret.negde });
        ret.posde = max(sp_split[t][x].posde, ret.posde);
        ret.negde = max(sp_split[t][x].negde, ret.negde);
        x = sp[t][x];
    }
    ret.ans = max({ sp_split[0][x].ans, ret.ans, sp_split[0][x].posde + ret.negde });
    ret.posde = max(sp_split[0][x].posde, ret.posde);
    ret.negde = max(sp_split[0][x].negde, ret.negde);
    return ret;
}

int dfs_dist(int x) {
    max_depth[x] = 0;
    dist[x] = 0;
    int mx0 = (int)-1e9, mx1 = (int)-1e9;
    for (auto &i: child[x]) {
        int t = dfs_dist(i) + 1;
        max_depth[x] = max(max_depth[x], t);
        if (t > mx0) mx1 = mx0, mx0 = t;
        else if (t > mx1) mx1 = t;
        dist[x] = max(dist[x], dist[i]);
    }
    dist[x] = max(dist[x], mx0 + max(mx1, 0));
    return max_depth[x];
}

void dfs_rev_dist(int x) {
    for (auto &i: child[x]) {
        lt_depth[x].push(max_depth[i] + 1);
        if (prev_depth[x][0] < max_depth[i] + 1) prev_depth[x][1] = prev_depth[x][0], prev_depth[x][0] = max_depth[i] + 1;
        else if (prev_depth[x][1] < max_depth[i] + 1) prev_depth[x][1] = max_depth[i] + 1;
        lt_dist[x].push(dist[i]);
        if (prev_dist[x] < dist[i]) prev_dist[x] = dist[i];
    }
    for (auto &i: child[x]) {
        lt_depth[x].pop(max_depth[i] + 1);
        lt_dist[x].pop(dist[i]);
        rev_dist[i] = max({ rev_max_depth[i] = max(lt_depth[x].first(), rev_max_depth[x]) + 1, lt_depth[x].second(), lt_depth[x].first() + rev_dist[x]});
        lt_depth[x].push(max_depth[i] + 1);
        lt_dist[x].push(dist[i]);
    }
    for (auto &i: child[x]) dfs_rev_dist(i);
}

void dfs_construct(int x) {
    for (auto &i: child[x]) {
        lt_dist[x].pop(dist[i]);
        sp_dist[0][i] = lt_dist[x].first();
        lt_dist[x].push(dist[i]);
        lt_depth[x].pop(max_depth[i] + 1);
        int V = lt_depth[x].first();
        sp_dist[0][i] = max(sp_dist[0][i], lt_depth[x].second());
        sp_split[0][i].posde = V + depth[x];
        sp_split[0][i].negde = V - depth[x];
        lt_depth[x].push(max_depth[i] + 1);
    }
    for (auto &i: child[x]) dfs_construct(i);
}

void dfs_child(int x, int prev = -1) {
    sp[0][x] = prev;
    for (auto &i: tree[x]) if (i != prev) {
        depth[i] = depth[x] + 1;
        child[x].push_back(i);
        dfs_child(i, x);
    }
}

int A, B;

inline int lca(int u, int v) {
    bool sw = false;
    if (depth[u] < depth[v]) swap(u, v), sw = true;
    int diff = depth[u] - depth[v] - 1;
    if (~diff) {
        for (int t = 18; t >= 0; t--) if (diff >= 1 << t) {
            diff -= 1 << t;
            u = sp[t][u];
        }
        if (sw) B = u;
        else A = u;
        u = sp[0][u];
        if (u == v) return u;
    }
    for (int t = 18; t >= 0; t--) if (sp[t][u] != -1 && sp[t][v] != -1 && sp[t][u] != sp[t][v]) {
        u = sp[t][u];
        v = sp[t][v];
    }
    A = u, B = v;
    if (sw) swap(A, B);
    return sp[0][u];
}

inline int query_sp_dist(int u, int v, int l, int A, int B) {
    int ret = 0;
    if (u != l) {
        ret = max(prev_depth[u][0] + prev_depth[u][1], prev_dist[u]);
        u = sp[0][u];
    }
    if (v != l) {
        ret = max(prev_depth[v][0] + prev_depth[v][1], prev_dist[v]);
        v = sp[0][v];
    }
    for (int t = 18; t >= 0; t--) if (sp[t][u] != -1 && depth[sp[t][u]] > depth[l]) {
        ret = max(ret, sp_dist[t][u]);
        u = sp[t][u];
    }
    for (int t = 18; t >= 0; t--) if (sp[t][v] != -1 && depth[sp[t][v]] > depth[l]) {
        ret = max(ret, sp_dist[t][v]);
        v = sp[t][v];
    }
    if (A != -1) lt_dist[l].pop(dist[A]);
    if (B != -1) lt_dist[l].pop(dist[B]);
    ret = max(ret, lt_dist[l].first());
    if (A != -1) lt_dist[l].push(dist[A]);
    if (B != -1) lt_dist[l].push(dist[B]);
    return ret;
}

int main() {
    scanf("%d%d", &n, &m);
    while (m--) {
        int x, y, w;
        scanf("%d%d%d", &x, &y, &w);
        if (w == 1) {
            tree[x].push_back(y);
            tree[y].push_back(x);
        } else adj[x].push_back({ y, w });
    }
    for (int i = 0; i < n; i++) prev_dist[i] = prev_depth[i][0] = prev_depth[i][1] = (int)-1e9;
    dfs_child(0);
    dfs_dist(0);
    dfs_rev_dist(0);
    dfs_construct(0);
    for (int t = 1; t < 19; t++) for (int i = 0; i < n; i++) {
        if (sp[t - 1][i] == -1) {
            sp[t][i] = -1;
            sp_dist[t][i] = sp_dist[t - 1][i];
            sp_split[t][i] = sp_split[t - 1][i];
        } else {
            sp[t][i] = sp[t - 1][sp[t - 1][i]];
            sp_dist[t][i] = max(sp_dist[t - 1][i], sp_dist[t - 1][sp[t - 1][i]]);
            sp_split[t][i].ans = max({ sp_split[t - 1][sp[t - 1][i]].ans, sp_split[t - 1][i].ans, sp_split[t - 1][sp[t - 1][i]].posde + sp_split[t - 1][i].negde });
            sp_split[t][i].posde = max(sp_split[t - 1][sp[t - 1][i]].posde, sp_split[t - 1][i].posde);
            sp_split[t][i].negde = max(sp_split[t - 1][sp[t - 1][i]].negde, sp_split[t - 1][i].negde);
        }
    }
    int res = 2 * (n - 1) - dist[0];
    for (int i = 0; i < n; i++) for (auto [ j, w ]: adj[i]) {
        A = B = -1;
        int l = lca(i, j);
        int ds = depth[i] + depth[j] - depth[l] - depth[l];
        int curr = w + 2 * (n - 1) - ds - 1;
        int G = 0, y = 0;
        if (A != -1) lt_depth[l].pop(max_depth[A] + 1);
        if (B != -1) lt_depth[l].pop(max_depth[B] + 1);
        G = lt_depth[l].first();
        y = max({ y, G + rev_max_depth[l] - 1, lt_depth[l].second() - 1 });
        if (A != -1) lt_depth[l].push(max_depth[A] + 1);
        if (B != -1) lt_depth[l].push(max_depth[B] + 1);
        Item first = query_sp_res(A, i);
        Item second = query_sp_res(B, j);
        int Alt = first.negde + depth[l];
        int Brt = second.negde + depth[l];
        int Lt = max(rev_max_depth[l], G);
        res = min(res, curr - max({ y, Alt + max(Brt, Lt) + 1, max(Alt, Lt) + Brt + 1, first.ans + 1, second.ans + 1, rev_dist[l] - 1, query_sp_dist(i, j, l, A, B) - 1 }));
    }
    printf("%d", res);
}

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:171:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  171 |     scanf("%d%d", &n, &m);
      |     ~~~~~^~~~~~~~~~~~~~~~
Main.cpp:174:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  174 |         scanf("%d%d%d", &x, &y, &w);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 25 ms 47684 KB Output is correct
2 Correct 26 ms 47720 KB Output is correct
3 Incorrect 27 ms 47744 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 47684 KB Output is correct
2 Correct 26 ms 47720 KB Output is correct
3 Incorrect 27 ms 47744 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 35 ms 50680 KB Output is correct
2 Correct 34 ms 50848 KB Output is correct
3 Correct 37 ms 50632 KB Output is correct
4 Correct 36 ms 50476 KB Output is correct
5 Correct 34 ms 50320 KB Output is correct
6 Correct 31 ms 49996 KB Output is correct
7 Correct 33 ms 50764 KB Output is correct
8 Correct 35 ms 50484 KB Output is correct
9 Correct 33 ms 50764 KB Output is correct
10 Correct 35 ms 50376 KB Output is correct
11 Incorrect 34 ms 50620 KB Output isn't correct
12 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 47684 KB Output is correct
2 Correct 26 ms 47720 KB Output is correct
3 Incorrect 27 ms 47744 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 47684 KB Output is correct
2 Correct 26 ms 47720 KB Output is correct
3 Incorrect 27 ms 47744 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 47684 KB Output is correct
2 Correct 26 ms 47720 KB Output is correct
3 Incorrect 27 ms 47744 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 47684 KB Output is correct
2 Correct 26 ms 47720 KB Output is correct
3 Incorrect 27 ms 47744 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 47684 KB Output is correct
2 Correct 26 ms 47720 KB Output is correct
3 Incorrect 27 ms 47744 KB Output isn't correct
4 Halted 0 ms 0 KB -