답안 #526044

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
526044 2022-02-13T15:34:57 Z mjhmjh1104 Mountains and Valleys (CCO20_day1problem3) C++17
16 / 25
643 ms 133480 KB
#include <set>
#include <cstdio>
#include <vector>
#include <utility>
#include <iterator>
#include <algorithm>
using namespace std;

struct Item {
    int posde = (int)-1e9;
    int negde = (int)-1e9;
    int ans = (int)-1e9;
} tree_split[1048576];

Item f(const Item a, const Item b) {
    Item ret = { max(a.posde, b.posde), max(a.negde, b.negde), max(a.ans, b.ans) };
    ret.ans = max(ret.ans, a.posde + b.negde);
    return ret;
}

int query_deg(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return (int)-1e9;
    if (l <= b && e <= r) return tree_split[i].negde;
    int m = (b + e) / 2;
    return max(query_deg(i * 2 + 1, b, m, l, r), query_deg(i * 2 + 2, m + 1, e, l, r));
}

Item query_split(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return Item{ (int)-1e9, (int)-1e9, (int)-1e9 };
    if (l <= b && e <= r) return tree_split[i];
    int m = (b + e) / 2;
    return f(query_split(i * 2 + 1, b, m, l, r), query_split(i * 2 + 2, m + 1, e, l, r));
}

int n, m;
vector<int> tree[500006], child[500006];
vector<pair<int, int>> adj[500006];
int sz[500006], depth[500006], par[500006];
int in[500006], top[500006], T;
int sp[19][500006], sp_dist[19][500006];
multiset<int> lt_depth[500006], lt_dist[500006];
int max_depth[500006], rev_max_depth[500006], dist[500006], rev_dist[500006];
int f_dist[500006], edge[500006];

int query_hld_half(int u, int v) {
    int ret = (int)-1e9;
    int pv = -1;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
        ret = max(ret, (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin()) - depth[u]);
        if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
        ret = max(ret, query_deg(0, 0, 524287, in[top[u]], in[u] - 1));
        pv = top[u];
        u = par[top[u]];
    }
    if (depth[u] < depth[v]) swap(u, v);
    if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
    ret = max(ret, (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin()) - depth[u]);
    if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
    ret = max(ret, query_deg(0, 0, 524287, in[v], in[u] - 1));
    return ret;
}

int query_hld_res(int u, int v) {
    vector<Item> z;
    int pv = -1;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
        int V = (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin());
        z.push_back(Item{ V + depth[u], V - depth[u], (int)-1e9 });
        if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
        z.push_back(query_split(0, 0, 524287, in[top[u]], in[u] - 1));
        if (z.back().posde == (int)-1e9) z.pop_back();
        pv = top[u];
        u = par[top[u]];
    }
    if (depth[u] < depth[v]) swap(u, v);
    if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
    int V = (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin());
    z.push_back(Item{ V + depth[u], V - depth[u], (int)-1e9 });
    if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
    z.push_back(query_split(0, 0, 524287, in[v], in[u] - 1));
    if (z.back().posde == (int)-1e9) z.pop_back();
    reverse(z.begin(), z.end());
    int ret = (int)-1e9;
    for (auto &i: z) ret = max(ret, i.ans);
    for (int i = 0; i < (int)z.size(); i++) for (int j = i + 1; j < (int)z.size(); j++) ret = max(ret, z[i].posde + z[j].negde);
    return ret;
}

int dfs_dist(int x) {
    vector<int> v;
    max_depth[x] = 0;
    dist[x] = 0;
    for (auto &i: child[x]) {
        v.push_back(dfs_dist(i) + 1);
        max_depth[x] = max(max_depth[x], v.back());
        dist[x] = max(dist[x], dist[i]);
    }
    int v0 = max_element(v.begin(), v.end()) - v.begin();
    int X = v[v0];
    if (!v.empty()) v[v0] = 0;
    int v1 = max_element(v.begin(), v.end()) - v.begin();
    v[v0] = X;
    if (!v.empty()) dist[x] = max(dist[x], v[v0]);
    if ((int)v.size() > 1) dist[x] = max(dist[x], v[v0] + v[v1]);
    return max_depth[x];
}

void dfs_rev_dist(int x) {
    multiset<int> v, u, w;
    v.insert(rev_max_depth[x]);
    u.insert(rev_dist[x]);
    for (auto &i: child[x]) {
        v.insert(max_depth[i] + 1);
        u.insert(dist[i]);
    }
    for (auto &i: child[x]) {
        v.erase(v.find(max_depth[i] + 1));
        u.erase(u.find(dist[i]));
        if (!u.empty()) rev_dist[i] = *u.rbegin();
        if (!v.empty()) rev_dist[i] = max(rev_dist[i], rev_max_depth[i] = *v.rbegin() + 1);
        if ((int)v.size() > 1) rev_dist[i] = max(rev_dist[i], *v.rbegin() + *prev(prev(v.end())));
        v.insert(max_depth[i] + 1);
        u.insert(dist[i]);
    }
    for (auto &i: child[x]) dfs_rev_dist(i);
}


void dfs_f_dist(int x) {
    for (auto &i: child[x]) {
        lt_dist[x].erase(lt_dist[x].find(dist[i]));
        f_dist[i] = (lt_dist[x].empty() ? 0 : *lt_dist[x].rbegin());
        lt_dist[x].insert(dist[i]);
    }
    for (auto &i: child[x]) dfs_f_dist(i);
}

void dfs_edge(int x) {
    multiset<int> v;
    for (auto &i: child[x]) v.insert(max_depth[i] + 1);
    for (auto &i: child[x]) {
        v.erase(v.find(max_depth[i] + 1));
        if ((int)v.size() > 1) edge[i] = *v.rbegin() + *prev(prev(v.end()));
        else if (!v.empty()) edge[i] = *v.rbegin();
        v.insert(max_depth[i] + 1);
    }
    for (auto &i: child[x]) dfs_edge(i);
}

void dfs_child(int x, int prev = -1) {
    par[x] = prev;
    for (auto &i: tree[x]) if (i != prev) {
        child[x].push_back(i);
        dfs_child(i, x);
    }
}

int dfs_sz(int x) {
    sz[x] = 1;
    for (auto &i: child[x]) {
        depth[i] = depth[x] + 1;
        sz[x] += dfs_sz(i);
        if (sz[i] > sz[child[x][0]]) swap(child[x][0], i);
    }
    return sz[x];
}

void dfs_hld(int x) {
    in[x] = T++;
    for (auto &i: child[x]) {
        top[i] = (i == child[x][0] ? top[x] : i);
        dfs_hld(i);
    }
}

int lca(int u, int v) {
    int ret = 0;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        ret += depth[u] - depth[par[top[u]]];
        u = par[top[u]];
    }
    if (depth[u] > depth[v]) swap(u, v);
    return u;
}

int pr(int x, int y) {
    for (int t = 18; t >= 0; t--) if (y >= 1 << t) {
        y -= 1 << t;
        x = sp[t][x];
    }
    return x;
}

int tree_edge[1048576];

int query_edge(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return 0;
    if (l <= b && e <= r) return tree_edge[i];
    int m = (b + e) / 2;
    return max(query_edge(i * 2 + 1, b, m, l, r), query_edge(i * 2 + 2, m + 1, e, l, r));
}

int query_sp_dist(int u, int v, int l, int A, int B) {
    int ret = 0;
    if (u != l) ret = max(ret, lt_dist[u].empty() ? 0 : *lt_dist[u].rbegin()), u = sp[0][u];
    if (v != l) ret = max(ret, lt_dist[v].empty() ? 0 : *lt_dist[v].rbegin()), v = sp[0][u];
    for (int t = 18; t >= 0; t--) if (sp[t][u] != -1 && depth[sp[t][u]] > depth[l]) {
        ret = max(ret, sp_dist[t][u]);
        u = sp[t][u];
    }
    for (int t = 18; t >= 0; t--) if (sp[t][v] != -1 && depth[sp[t][v]] > depth[l]) {
        ret = max(ret, sp_dist[t][v]);
        v = sp[t][v];
    }
    if (A != -1) lt_dist[l].erase(lt_dist[l].find(dist[A]));
    if (B != -1) lt_dist[l].erase(lt_dist[l].find(dist[B]));
    ret = max(ret, lt_dist[l].empty() ? 0 : *lt_dist[l].rbegin());
    if (A != -1) lt_dist[l].insert(dist[A]);
    if (B != -1) lt_dist[l].insert(dist[B]);
    return ret;
}

int query_hld_edge(int u, int v) {
    int ret = 0;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        ret = max(ret, query_edge(0, 0, 524287, in[top[u]], in[u]));
        u = par[top[u]];
    }
    ret = max(ret, query_edge(0, 0, 524287, min(in[u], in[v]), max(in[u], in[v])));
    return ret;
}

int main() {
    scanf("%d%d", &n, &m);
    while (m--) {
        int x, y, w;
        scanf("%d%d%d", &x, &y, &w);
        if (w == 1) {
            tree[x].push_back(y);
            tree[y].push_back(x);
        } else {
            adj[x].push_back({ y, w });
            adj[y].push_back({ x, w });
        }
    }
    dfs_child(0);
    dfs_sz(0);
    dfs_hld(0);
    dfs_dist(0);
    dfs_rev_dist(0);
    dfs_edge(0);
    for (int i = 0; i < n; i++) for (auto &j: child[i]) {
        lt_depth[i].insert(max_depth[j] + 1);
        lt_dist[i].insert(dist[j]);
    }
    dfs_f_dist(0);
    for (int i = 0; i < n; i++) sp[0][i] = par[i], sp_dist[0][i] = f_dist[i];
    for (int t = 1; t < 19; t++) for (int i = 0; i < n; i++) {
        if (sp[t - 1][i] == -1) sp[t][i] = -1, sp_dist[t][i] = sp_dist[t - 1][i];
        else sp[t][i] = sp[t - 1][sp[t - 1][i]], sp_dist[t][i] = max(sp_dist[t - 1][i], sp_dist[t - 1][sp[t - 1][i]]);
    }
    for (int i = 0; i < n; i++) {
        tree_edge[524287 + in[i]] = edge[i];
        int v = 0;
        if (!child[i].empty()) lt_depth[i].erase(lt_depth[i].find(max_depth[child[i][0]] + 1));
        if (!lt_depth[i].empty()) v = *lt_depth[i].rbegin();
        if (!child[i].empty()) lt_depth[i].insert(max_depth[child[i][0]] + 1);
        tree_split[524287 + in[i]] = { v + depth[i], v - depth[i], (int)-1e9 };
    }
    for (int i = 524286; i >= 0; i--) {
        tree_edge[i] = max(tree_edge[i * 2 + 1], tree_edge[i * 2 + 2]);
        tree_split[i] = f(tree_split[i * 2 + 1], tree_split[i * 2 + 2]);
    }
    int zero = 2 * (n - 1) - dist[0], one = (int)1e9;
    for (int i = 0; i < n; i++) for (auto &j: adj[i]) if (i < j.first) {
        int l = lca(i, j.first);
        int ds = depth[i] + depth[j.first] - depth[l] - depth[l];
        int curr = j.second + 2 * (n - 1) - ds - 1;
        int A = (i == l ? -1 : pr(i, depth[i] - depth[l] - 1));
        int B = (j.first == l ? -1 : pr(j.first, depth[j.first] - depth[l] - 1));
        int y = max(rev_dist[l] - 1, query_sp_dist(i, j.first, l, A, B) - 1);
        int Ap = (depth[i] - depth[l] - 2 >= 0 ? pr(i, depth[i] - depth[l] - 2) : -1);
        int Bp = (depth[j.first] - depth[l] - 2 >= 0 ? pr(j.first, depth[j.first] - depth[l] - 2) : -1);
        if (A != -1) lt_depth[l].erase(lt_depth[l].find(max_depth[A] + 1));
        if (B != -1) lt_depth[l].erase(lt_depth[l].find(max_depth[B] + 1));
        int G = 0;
        if (!lt_depth[l].empty()) G = *lt_depth[l].rbegin();
        if (!lt_depth[l].empty()) y = max(y, *lt_depth[l].rbegin() + rev_max_depth[l] - 1);
        else y = max(y, rev_max_depth[l] - 1);
        if ((int)lt_depth[l].size() > 1) y = max(y, *lt_depth[l].rbegin() + *prev(prev(lt_depth[l].end())) - 1);
        if (A != -1) lt_depth[l].insert(max_depth[A] + 1);
        if (B != -1) lt_depth[l].insert(max_depth[B] + 1);
        if (Ap != -1) y = max(y, query_hld_edge(Ap, i) - 1);
        if (Bp != -1) y = max(y, query_hld_edge(Bp, j.first) - 1);
        int Alt = (A == -1 ? (int)-1e9 : query_hld_half(A, i) + depth[l]);
        int Brt = (B == -1 ? (int)-1e9 : query_hld_half(B, j.first) + depth[l]);
        int Lt = max(rev_max_depth[l], G);
        y = max(y, Alt + max(Brt, Lt) + 1);
        y = max(y, max(Alt, Lt) + Brt + 1);
        if (A != -1) y = max(y, query_hld_res(A, i) + 1);
        if (B != -1) y = max(y, query_hld_res(B, j.first) + 1);
        curr -= y;
        one = min(one, curr);
    }
    printf("%d", min(zero, one));
}

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:240:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  240 |     scanf("%d%d", &n, &m);
      |     ~~~~~^~~~~~~~~~~~~~~~
Main.cpp:243:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  243 |         scanf("%d%d%d", &x, &y, &w);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 55 ms 91072 KB Output is correct
2 Correct 49 ms 91064 KB Output is correct
3 Correct 49 ms 91052 KB Output is correct
4 Correct 47 ms 90948 KB Output is correct
5 Correct 47 ms 91048 KB Output is correct
6 Correct 48 ms 91008 KB Output is correct
7 Correct 50 ms 91032 KB Output is correct
8 Correct 47 ms 90948 KB Output is correct
9 Correct 47 ms 90976 KB Output is correct
10 Correct 53 ms 91008 KB Output is correct
11 Correct 49 ms 91020 KB Output is correct
12 Correct 51 ms 90948 KB Output is correct
13 Correct 50 ms 91084 KB Output is correct
14 Correct 46 ms 90948 KB Output is correct
15 Correct 50 ms 91068 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 55 ms 91072 KB Output is correct
2 Correct 49 ms 91064 KB Output is correct
3 Correct 49 ms 91052 KB Output is correct
4 Correct 47 ms 90948 KB Output is correct
5 Correct 47 ms 91048 KB Output is correct
6 Correct 48 ms 91008 KB Output is correct
7 Correct 50 ms 91032 KB Output is correct
8 Correct 47 ms 90948 KB Output is correct
9 Correct 47 ms 90976 KB Output is correct
10 Correct 53 ms 91008 KB Output is correct
11 Correct 49 ms 91020 KB Output is correct
12 Correct 51 ms 90948 KB Output is correct
13 Correct 50 ms 91084 KB Output is correct
14 Correct 46 ms 90948 KB Output is correct
15 Correct 50 ms 91068 KB Output is correct
16 Correct 49 ms 91076 KB Output is correct
17 Correct 50 ms 91020 KB Output is correct
18 Correct 50 ms 90948 KB Output is correct
19 Correct 47 ms 91076 KB Output is correct
20 Correct 47 ms 91028 KB Output is correct
21 Correct 47 ms 91008 KB Output is correct
22 Correct 49 ms 91076 KB Output is correct
23 Correct 48 ms 91076 KB Output is correct
24 Correct 50 ms 91088 KB Output is correct
25 Correct 48 ms 91076 KB Output is correct
26 Correct 48 ms 90976 KB Output is correct
27 Correct 48 ms 91076 KB Output is correct
28 Correct 48 ms 90976 KB Output is correct
29 Correct 46 ms 90948 KB Output is correct
30 Correct 48 ms 91132 KB Output is correct
31 Correct 51 ms 90988 KB Output is correct
32 Correct 51 ms 91052 KB Output is correct
33 Correct 51 ms 91068 KB Output is correct
34 Correct 49 ms 91052 KB Output is correct
35 Correct 60 ms 90952 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 72 ms 94388 KB Output is correct
2 Correct 71 ms 94812 KB Output is correct
3 Correct 72 ms 93876 KB Output is correct
4 Correct 71 ms 93604 KB Output is correct
5 Correct 88 ms 93508 KB Output is correct
6 Correct 65 ms 92968 KB Output is correct
7 Correct 67 ms 94520 KB Output is correct
8 Correct 74 ms 94008 KB Output is correct
9 Correct 72 ms 94532 KB Output is correct
10 Correct 75 ms 93620 KB Output is correct
11 Correct 73 ms 94036 KB Output is correct
12 Correct 69 ms 93444 KB Output is correct
13 Correct 70 ms 93744 KB Output is correct
14 Correct 73 ms 93764 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 55 ms 91072 KB Output is correct
2 Correct 49 ms 91064 KB Output is correct
3 Correct 49 ms 91052 KB Output is correct
4 Correct 47 ms 90948 KB Output is correct
5 Correct 47 ms 91048 KB Output is correct
6 Correct 48 ms 91008 KB Output is correct
7 Correct 50 ms 91032 KB Output is correct
8 Correct 47 ms 90948 KB Output is correct
9 Correct 47 ms 90976 KB Output is correct
10 Correct 53 ms 91008 KB Output is correct
11 Correct 49 ms 91020 KB Output is correct
12 Correct 51 ms 90948 KB Output is correct
13 Correct 50 ms 91084 KB Output is correct
14 Correct 46 ms 90948 KB Output is correct
15 Correct 50 ms 91068 KB Output is correct
16 Correct 49 ms 91076 KB Output is correct
17 Correct 50 ms 91020 KB Output is correct
18 Correct 50 ms 90948 KB Output is correct
19 Correct 47 ms 91076 KB Output is correct
20 Correct 47 ms 91028 KB Output is correct
21 Correct 47 ms 91008 KB Output is correct
22 Correct 49 ms 91076 KB Output is correct
23 Correct 48 ms 91076 KB Output is correct
24 Correct 50 ms 91088 KB Output is correct
25 Correct 48 ms 91076 KB Output is correct
26 Correct 48 ms 90976 KB Output is correct
27 Correct 48 ms 91076 KB Output is correct
28 Correct 48 ms 90976 KB Output is correct
29 Correct 46 ms 90948 KB Output is correct
30 Correct 48 ms 91132 KB Output is correct
31 Correct 51 ms 90988 KB Output is correct
32 Correct 51 ms 91052 KB Output is correct
33 Correct 51 ms 91068 KB Output is correct
34 Correct 49 ms 91052 KB Output is correct
35 Correct 60 ms 90952 KB Output is correct
36 Correct 49 ms 91084 KB Output is correct
37 Correct 50 ms 91060 KB Output is correct
38 Correct 50 ms 91108 KB Output is correct
39 Correct 49 ms 90992 KB Output is correct
40 Correct 49 ms 91012 KB Output is correct
41 Correct 48 ms 90988 KB Output is correct
42 Correct 49 ms 91084 KB Output is correct
43 Correct 60 ms 91084 KB Output is correct
44 Correct 49 ms 91076 KB Output is correct
45 Correct 48 ms 91052 KB Output is correct
46 Correct 49 ms 91104 KB Output is correct
47 Correct 48 ms 91080 KB Output is correct
48 Correct 48 ms 91076 KB Output is correct
49 Correct 59 ms 91116 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 55 ms 91072 KB Output is correct
2 Correct 49 ms 91064 KB Output is correct
3 Correct 49 ms 91052 KB Output is correct
4 Correct 47 ms 90948 KB Output is correct
5 Correct 47 ms 91048 KB Output is correct
6 Correct 48 ms 91008 KB Output is correct
7 Correct 50 ms 91032 KB Output is correct
8 Correct 47 ms 90948 KB Output is correct
9 Correct 47 ms 90976 KB Output is correct
10 Correct 53 ms 91008 KB Output is correct
11 Correct 49 ms 91020 KB Output is correct
12 Correct 51 ms 90948 KB Output is correct
13 Correct 50 ms 91084 KB Output is correct
14 Correct 46 ms 90948 KB Output is correct
15 Correct 50 ms 91068 KB Output is correct
16 Correct 49 ms 91076 KB Output is correct
17 Correct 50 ms 91020 KB Output is correct
18 Correct 50 ms 90948 KB Output is correct
19 Correct 47 ms 91076 KB Output is correct
20 Correct 47 ms 91028 KB Output is correct
21 Correct 47 ms 91008 KB Output is correct
22 Correct 49 ms 91076 KB Output is correct
23 Correct 48 ms 91076 KB Output is correct
24 Correct 50 ms 91088 KB Output is correct
25 Correct 48 ms 91076 KB Output is correct
26 Correct 48 ms 90976 KB Output is correct
27 Correct 48 ms 91076 KB Output is correct
28 Correct 48 ms 90976 KB Output is correct
29 Correct 46 ms 90948 KB Output is correct
30 Correct 48 ms 91132 KB Output is correct
31 Correct 51 ms 90988 KB Output is correct
32 Correct 51 ms 91052 KB Output is correct
33 Correct 51 ms 91068 KB Output is correct
34 Correct 49 ms 91052 KB Output is correct
35 Correct 60 ms 90952 KB Output is correct
36 Correct 49 ms 91084 KB Output is correct
37 Correct 50 ms 91060 KB Output is correct
38 Correct 50 ms 91108 KB Output is correct
39 Correct 49 ms 90992 KB Output is correct
40 Correct 49 ms 91012 KB Output is correct
41 Correct 48 ms 90988 KB Output is correct
42 Correct 49 ms 91084 KB Output is correct
43 Correct 60 ms 91084 KB Output is correct
44 Correct 49 ms 91076 KB Output is correct
45 Correct 48 ms 91052 KB Output is correct
46 Correct 49 ms 91104 KB Output is correct
47 Correct 48 ms 91080 KB Output is correct
48 Correct 48 ms 91076 KB Output is correct
49 Correct 59 ms 91116 KB Output is correct
50 Correct 51 ms 91444 KB Output is correct
51 Correct 50 ms 91328 KB Output is correct
52 Correct 50 ms 91316 KB Output is correct
53 Correct 51 ms 91196 KB Output is correct
54 Correct 55 ms 91184 KB Output is correct
55 Correct 51 ms 91200 KB Output is correct
56 Correct 50 ms 91248 KB Output is correct
57 Correct 51 ms 91236 KB Output is correct
58 Correct 52 ms 91332 KB Output is correct
59 Correct 57 ms 91316 KB Output is correct
60 Correct 52 ms 91204 KB Output is correct
61 Correct 51 ms 91304 KB Output is correct
62 Correct 52 ms 91200 KB Output is correct
63 Correct 55 ms 91180 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 55 ms 91072 KB Output is correct
2 Correct 49 ms 91064 KB Output is correct
3 Correct 49 ms 91052 KB Output is correct
4 Correct 47 ms 90948 KB Output is correct
5 Correct 47 ms 91048 KB Output is correct
6 Correct 48 ms 91008 KB Output is correct
7 Correct 50 ms 91032 KB Output is correct
8 Correct 47 ms 90948 KB Output is correct
9 Correct 47 ms 90976 KB Output is correct
10 Correct 53 ms 91008 KB Output is correct
11 Correct 49 ms 91020 KB Output is correct
12 Correct 51 ms 90948 KB Output is correct
13 Correct 50 ms 91084 KB Output is correct
14 Correct 46 ms 90948 KB Output is correct
15 Correct 50 ms 91068 KB Output is correct
16 Correct 49 ms 91076 KB Output is correct
17 Correct 50 ms 91020 KB Output is correct
18 Correct 50 ms 90948 KB Output is correct
19 Correct 47 ms 91076 KB Output is correct
20 Correct 47 ms 91028 KB Output is correct
21 Correct 47 ms 91008 KB Output is correct
22 Correct 49 ms 91076 KB Output is correct
23 Correct 48 ms 91076 KB Output is correct
24 Correct 50 ms 91088 KB Output is correct
25 Correct 48 ms 91076 KB Output is correct
26 Correct 48 ms 90976 KB Output is correct
27 Correct 48 ms 91076 KB Output is correct
28 Correct 48 ms 90976 KB Output is correct
29 Correct 46 ms 90948 KB Output is correct
30 Correct 48 ms 91132 KB Output is correct
31 Correct 51 ms 90988 KB Output is correct
32 Correct 51 ms 91052 KB Output is correct
33 Correct 51 ms 91068 KB Output is correct
34 Correct 49 ms 91052 KB Output is correct
35 Correct 60 ms 90952 KB Output is correct
36 Correct 72 ms 94388 KB Output is correct
37 Correct 71 ms 94812 KB Output is correct
38 Correct 72 ms 93876 KB Output is correct
39 Correct 71 ms 93604 KB Output is correct
40 Correct 88 ms 93508 KB Output is correct
41 Correct 65 ms 92968 KB Output is correct
42 Correct 67 ms 94520 KB Output is correct
43 Correct 74 ms 94008 KB Output is correct
44 Correct 72 ms 94532 KB Output is correct
45 Correct 75 ms 93620 KB Output is correct
46 Correct 73 ms 94036 KB Output is correct
47 Correct 69 ms 93444 KB Output is correct
48 Correct 70 ms 93744 KB Output is correct
49 Correct 73 ms 93764 KB Output is correct
50 Correct 49 ms 91084 KB Output is correct
51 Correct 50 ms 91060 KB Output is correct
52 Correct 50 ms 91108 KB Output is correct
53 Correct 49 ms 90992 KB Output is correct
54 Correct 49 ms 91012 KB Output is correct
55 Correct 48 ms 90988 KB Output is correct
56 Correct 49 ms 91084 KB Output is correct
57 Correct 60 ms 91084 KB Output is correct
58 Correct 49 ms 91076 KB Output is correct
59 Correct 48 ms 91052 KB Output is correct
60 Correct 49 ms 91104 KB Output is correct
61 Correct 48 ms 91080 KB Output is correct
62 Correct 48 ms 91076 KB Output is correct
63 Correct 59 ms 91116 KB Output is correct
64 Correct 51 ms 91444 KB Output is correct
65 Correct 50 ms 91328 KB Output is correct
66 Correct 50 ms 91316 KB Output is correct
67 Correct 51 ms 91196 KB Output is correct
68 Correct 55 ms 91184 KB Output is correct
69 Correct 51 ms 91200 KB Output is correct
70 Correct 50 ms 91248 KB Output is correct
71 Correct 51 ms 91236 KB Output is correct
72 Correct 52 ms 91332 KB Output is correct
73 Correct 57 ms 91316 KB Output is correct
74 Correct 52 ms 91204 KB Output is correct
75 Correct 51 ms 91304 KB Output is correct
76 Correct 52 ms 91200 KB Output is correct
77 Correct 55 ms 91180 KB Output is correct
78 Correct 78 ms 93904 KB Output is correct
79 Correct 74 ms 94140 KB Output is correct
80 Correct 82 ms 93760 KB Output is correct
81 Correct 72 ms 93756 KB Output is correct
82 Correct 76 ms 93672 KB Output is correct
83 Correct 66 ms 93000 KB Output is correct
84 Correct 70 ms 93896 KB Output is correct
85 Correct 72 ms 94092 KB Output is correct
86 Correct 70 ms 94276 KB Output is correct
87 Correct 73 ms 93708 KB Output is correct
88 Correct 77 ms 93612 KB Output is correct
89 Correct 70 ms 93568 KB Output is correct
90 Correct 64 ms 93452 KB Output is correct
91 Correct 57 ms 93600 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 55 ms 91072 KB Output is correct
2 Correct 49 ms 91064 KB Output is correct
3 Correct 49 ms 91052 KB Output is correct
4 Correct 47 ms 90948 KB Output is correct
5 Correct 47 ms 91048 KB Output is correct
6 Correct 48 ms 91008 KB Output is correct
7 Correct 50 ms 91032 KB Output is correct
8 Correct 47 ms 90948 KB Output is correct
9 Correct 47 ms 90976 KB Output is correct
10 Correct 53 ms 91008 KB Output is correct
11 Correct 49 ms 91020 KB Output is correct
12 Correct 51 ms 90948 KB Output is correct
13 Correct 50 ms 91084 KB Output is correct
14 Correct 46 ms 90948 KB Output is correct
15 Correct 50 ms 91068 KB Output is correct
16 Correct 49 ms 91076 KB Output is correct
17 Correct 50 ms 91020 KB Output is correct
18 Correct 50 ms 90948 KB Output is correct
19 Correct 47 ms 91076 KB Output is correct
20 Correct 47 ms 91028 KB Output is correct
21 Correct 47 ms 91008 KB Output is correct
22 Correct 49 ms 91076 KB Output is correct
23 Correct 48 ms 91076 KB Output is correct
24 Correct 50 ms 91088 KB Output is correct
25 Correct 48 ms 91076 KB Output is correct
26 Correct 48 ms 90976 KB Output is correct
27 Correct 48 ms 91076 KB Output is correct
28 Correct 48 ms 90976 KB Output is correct
29 Correct 46 ms 90948 KB Output is correct
30 Correct 48 ms 91132 KB Output is correct
31 Correct 51 ms 90988 KB Output is correct
32 Correct 51 ms 91052 KB Output is correct
33 Correct 51 ms 91068 KB Output is correct
34 Correct 49 ms 91052 KB Output is correct
35 Correct 60 ms 90952 KB Output is correct
36 Correct 72 ms 94388 KB Output is correct
37 Correct 71 ms 94812 KB Output is correct
38 Correct 72 ms 93876 KB Output is correct
39 Correct 71 ms 93604 KB Output is correct
40 Correct 88 ms 93508 KB Output is correct
41 Correct 65 ms 92968 KB Output is correct
42 Correct 67 ms 94520 KB Output is correct
43 Correct 74 ms 94008 KB Output is correct
44 Correct 72 ms 94532 KB Output is correct
45 Correct 75 ms 93620 KB Output is correct
46 Correct 73 ms 94036 KB Output is correct
47 Correct 69 ms 93444 KB Output is correct
48 Correct 70 ms 93744 KB Output is correct
49 Correct 73 ms 93764 KB Output is correct
50 Correct 49 ms 91084 KB Output is correct
51 Correct 50 ms 91060 KB Output is correct
52 Correct 50 ms 91108 KB Output is correct
53 Correct 49 ms 90992 KB Output is correct
54 Correct 49 ms 91012 KB Output is correct
55 Correct 48 ms 90988 KB Output is correct
56 Correct 49 ms 91084 KB Output is correct
57 Correct 60 ms 91084 KB Output is correct
58 Correct 49 ms 91076 KB Output is correct
59 Correct 48 ms 91052 KB Output is correct
60 Correct 49 ms 91104 KB Output is correct
61 Correct 48 ms 91080 KB Output is correct
62 Correct 48 ms 91076 KB Output is correct
63 Correct 59 ms 91116 KB Output is correct
64 Correct 51 ms 91444 KB Output is correct
65 Correct 50 ms 91328 KB Output is correct
66 Correct 50 ms 91316 KB Output is correct
67 Correct 51 ms 91196 KB Output is correct
68 Correct 55 ms 91184 KB Output is correct
69 Correct 51 ms 91200 KB Output is correct
70 Correct 50 ms 91248 KB Output is correct
71 Correct 51 ms 91236 KB Output is correct
72 Correct 52 ms 91332 KB Output is correct
73 Correct 57 ms 91316 KB Output is correct
74 Correct 52 ms 91204 KB Output is correct
75 Correct 51 ms 91304 KB Output is correct
76 Correct 52 ms 91200 KB Output is correct
77 Correct 55 ms 91180 KB Output is correct
78 Correct 78 ms 93904 KB Output is correct
79 Correct 74 ms 94140 KB Output is correct
80 Correct 82 ms 93760 KB Output is correct
81 Correct 72 ms 93756 KB Output is correct
82 Correct 76 ms 93672 KB Output is correct
83 Correct 66 ms 93000 KB Output is correct
84 Correct 70 ms 93896 KB Output is correct
85 Correct 72 ms 94092 KB Output is correct
86 Correct 70 ms 94276 KB Output is correct
87 Correct 73 ms 93708 KB Output is correct
88 Correct 77 ms 93612 KB Output is correct
89 Correct 70 ms 93568 KB Output is correct
90 Correct 64 ms 93452 KB Output is correct
91 Correct 57 ms 93600 KB Output is correct
92 Correct 587 ms 133480 KB Output is correct
93 Incorrect 643 ms 133236 KB Output isn't correct
94 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 55 ms 91072 KB Output is correct
2 Correct 49 ms 91064 KB Output is correct
3 Correct 49 ms 91052 KB Output is correct
4 Correct 47 ms 90948 KB Output is correct
5 Correct 47 ms 91048 KB Output is correct
6 Correct 48 ms 91008 KB Output is correct
7 Correct 50 ms 91032 KB Output is correct
8 Correct 47 ms 90948 KB Output is correct
9 Correct 47 ms 90976 KB Output is correct
10 Correct 53 ms 91008 KB Output is correct
11 Correct 49 ms 91020 KB Output is correct
12 Correct 51 ms 90948 KB Output is correct
13 Correct 50 ms 91084 KB Output is correct
14 Correct 46 ms 90948 KB Output is correct
15 Correct 50 ms 91068 KB Output is correct
16 Correct 49 ms 91076 KB Output is correct
17 Correct 50 ms 91020 KB Output is correct
18 Correct 50 ms 90948 KB Output is correct
19 Correct 47 ms 91076 KB Output is correct
20 Correct 47 ms 91028 KB Output is correct
21 Correct 47 ms 91008 KB Output is correct
22 Correct 49 ms 91076 KB Output is correct
23 Correct 48 ms 91076 KB Output is correct
24 Correct 50 ms 91088 KB Output is correct
25 Correct 48 ms 91076 KB Output is correct
26 Correct 48 ms 90976 KB Output is correct
27 Correct 48 ms 91076 KB Output is correct
28 Correct 48 ms 90976 KB Output is correct
29 Correct 46 ms 90948 KB Output is correct
30 Correct 48 ms 91132 KB Output is correct
31 Correct 51 ms 90988 KB Output is correct
32 Correct 51 ms 91052 KB Output is correct
33 Correct 51 ms 91068 KB Output is correct
34 Correct 49 ms 91052 KB Output is correct
35 Correct 60 ms 90952 KB Output is correct
36 Correct 72 ms 94388 KB Output is correct
37 Correct 71 ms 94812 KB Output is correct
38 Correct 72 ms 93876 KB Output is correct
39 Correct 71 ms 93604 KB Output is correct
40 Correct 88 ms 93508 KB Output is correct
41 Correct 65 ms 92968 KB Output is correct
42 Correct 67 ms 94520 KB Output is correct
43 Correct 74 ms 94008 KB Output is correct
44 Correct 72 ms 94532 KB Output is correct
45 Correct 75 ms 93620 KB Output is correct
46 Correct 73 ms 94036 KB Output is correct
47 Correct 69 ms 93444 KB Output is correct
48 Correct 70 ms 93744 KB Output is correct
49 Correct 73 ms 93764 KB Output is correct
50 Correct 49 ms 91084 KB Output is correct
51 Correct 50 ms 91060 KB Output is correct
52 Correct 50 ms 91108 KB Output is correct
53 Correct 49 ms 90992 KB Output is correct
54 Correct 49 ms 91012 KB Output is correct
55 Correct 48 ms 90988 KB Output is correct
56 Correct 49 ms 91084 KB Output is correct
57 Correct 60 ms 91084 KB Output is correct
58 Correct 49 ms 91076 KB Output is correct
59 Correct 48 ms 91052 KB Output is correct
60 Correct 49 ms 91104 KB Output is correct
61 Correct 48 ms 91080 KB Output is correct
62 Correct 48 ms 91076 KB Output is correct
63 Correct 59 ms 91116 KB Output is correct
64 Correct 51 ms 91444 KB Output is correct
65 Correct 50 ms 91328 KB Output is correct
66 Correct 50 ms 91316 KB Output is correct
67 Correct 51 ms 91196 KB Output is correct
68 Correct 55 ms 91184 KB Output is correct
69 Correct 51 ms 91200 KB Output is correct
70 Correct 50 ms 91248 KB Output is correct
71 Correct 51 ms 91236 KB Output is correct
72 Correct 52 ms 91332 KB Output is correct
73 Correct 57 ms 91316 KB Output is correct
74 Correct 52 ms 91204 KB Output is correct
75 Correct 51 ms 91304 KB Output is correct
76 Correct 52 ms 91200 KB Output is correct
77 Correct 55 ms 91180 KB Output is correct
78 Correct 78 ms 93904 KB Output is correct
79 Correct 74 ms 94140 KB Output is correct
80 Correct 82 ms 93760 KB Output is correct
81 Correct 72 ms 93756 KB Output is correct
82 Correct 76 ms 93672 KB Output is correct
83 Correct 66 ms 93000 KB Output is correct
84 Correct 70 ms 93896 KB Output is correct
85 Correct 72 ms 94092 KB Output is correct
86 Correct 70 ms 94276 KB Output is correct
87 Correct 73 ms 93708 KB Output is correct
88 Correct 77 ms 93612 KB Output is correct
89 Correct 70 ms 93568 KB Output is correct
90 Correct 64 ms 93452 KB Output is correct
91 Correct 57 ms 93600 KB Output is correct
92 Correct 587 ms 133480 KB Output is correct
93 Incorrect 643 ms 133236 KB Output isn't correct
94 Halted 0 ms 0 KB -