Submission #525842

# Submission time Handle Problem Language Result Execution time Memory
525842 2022-02-13T03:13:47 Z mjhmjh1104 Mountains and Valleys (CCO20_day1problem3) C++17
0 / 25
838 ms 29196 KB
#include <set>
#include <cstdio>
#include <vector>
#include <utility>
#include <iterator>
#include <algorithm>
using namespace std;
 
int n, m;
vector<int> tree[200006], child[200006];
vector<pair<int, int>> adj[200006];
int _par[200006], _sz[200006];
int sz[200006], depth[200006], par[200006];
int in[200006], top[100006], T;
int sp[18][200006];
multiset<int> lt_depth[200006];
int max_depth[200006], rev_max_depth[200006], dist[200006], rev_dist[200006];
int edge[200006];
 
int dfs(int x, int prev = -1) {
    _par[x] = prev;
    _sz[x] = 1;
    for (auto &i: tree[x]) if (i != prev) {
        _sz[x] = max(_sz[x], dfs(i, x) + 1);
    }
    return _sz[x];
}
 
int dfs_dist(int x) {
    vector<int> v;
    max_depth[x] = 0;
    dist[x] = 0;
    for (auto &i: child[x]) {
        v.push_back(dfs_dist(i) + 1);
        max_depth[x] = max(max_depth[x], v.back());
        dist[x] = max(dist[x], dist[i]);
    }
    int v0 = max_element(v.begin(), v.end()) - v.begin();
    int X = v[v0];
    if (!v.empty()) v[v0] = 0;
    int v1 = max_element(v.begin(), v.end()) - v.begin();
    v[v0] = X;
    if (!v.empty()) dist[x] = max(dist[x], v[v0]);
    if ((int)v.size() > 1) dist[x] = max(dist[x], v[v0] + v[v1]);
    return max_depth[x];
}

void dfs_rev_dist(int x) {
    multiset<int> v, u, w;
    if (par[x] != -1) {
        v.insert(rev_max_depth[x]);
        u.insert(rev_dist[x]);
    }
    for (auto &i: child[x]) {
        v.insert(max_depth[i] + 1);
        u.insert(dist[i]);
    }
    for (auto &i: child[x]) {
        v.erase(v.find(max_depth[i] + 1));
        u.erase(u.find(dist[i]));
        if (!u.empty()) rev_dist[i] = *u.rbegin();
        if (!v.empty()) rev_dist[i] = max(rev_dist[i], rev_max_depth[i] = *v.rbegin() + 1);
        if ((int)v.size() > 1) rev_dist[i] = max(rev_dist[i], *v.rbegin() + *prev(prev(v.end())));
        v.insert(max_depth[i] + 1);
        u.insert(dist[i]);
    }
    for (auto &i: child[x]) dfs_rev_dist(i);
}

void dfs_edge(int x) {
    multiset<int> v;
    for (auto &i: child[x]) v.insert(max_depth[i]);
    for (auto &i: child[x]) {
        v.erase(v.find(max_depth[i]));
        if ((int)v.size() > 1) edge[i] = *v.rbegin() + *prev(prev(v.end()));
        else if (!v.empty()) edge[i] = *v.rbegin();
        v.insert(max_depth[i]);
    }
    for (auto &i: child[x]) dfs_edge(i);
}

void dfs_child(int x, int prev = -1) {
    par[x] = prev;
    for (auto &i: tree[x]) if (i != prev) {
        child[x].push_back(i);
        dfs_child(i, x);
    }
}

int dfs_sz(int x) {
    sz[x] = 1;
    for (auto &i: child[x]) {
        depth[i] = depth[x] + 1;
        sz[x] += dfs_sz(i);
        if (sz[i] > sz[child[x][0]]) swap(child[x][0], i);
    }
    return sz[x];
}

void dfs_hld(int x) {
    in[x] = T++;
    for (auto &i: child[x]) {
        top[i] = (i == child[x][0] ? top[x] : i);
        dfs_hld(i);
    }
}

int lca(int u, int v) {
    int ret = 0;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        ret += depth[u] - depth[par[top[u]]];
        u = par[top[u]];
    }
    if (depth[u] > depth[v]) swap(u, v);
    return u;
}

int pr(int x, int y) {
    for (int t = 17; t >= 0; t--) if (y >= 1 << t) {
        y -= 1 << t;
        x = sp[t][x];
    }
    return x;
}

int tree_dist[524288], tree_edge[524288];

int query_dist(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return 0;
    if (l <= b && e <= r) return tree_dist[i];
    int m = (b + e) / 2;
    return max(query_dist(i * 2 + 1, b, m, l, r), query_dist(i * 2 + 2, m + 1, e, l, r));
}

int query_edge(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return 0;
    if (l <= b && e <= r) return tree_edge[i];
    int m = (b + e) / 2;
    return max(query_edge(i * 2 + 1, b, m, l, r), query_edge(i * 2 + 2, m + 1, e, l, r));
}

vector<pair<int, int>> lt;

void query_hld(int u, int v) {
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        lt.push_back({ in[top[u]], in[u] });
        u = par[top[u]];
    }
    lt.push_back({ min(in[u], in[v]), max(in[u], in[v]) });
}

int query_hld_dist(int u, int v, int x, int y) {
    lt.clear();
    query_hld(u, v);
    sort(lt.begin(), lt.end());
    int ret = max(query_dist(0, 0, 262143, x, lt[0].first - 1), query_dist(0, 0, 262143, lt.back().second + 1, y));
    for (int i = 1; i < (int)lt.size(); i++) ret = max(ret, query_dist(0, 0, 262143, lt[i - 1].second + 1, lt[i].first - 1));
    return ret;
}

int query_hld_edge(int u, int v) {
    int ret = 0;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        ret = max(ret, query_edge(0, 0, 262143, in[top[u]], in[u]));
        u = par[top[u]];
    }
    ret = max(ret, query_edge(0, 0, 262143, min(in[u], in[v]), max(in[u], in[v])));
    return ret;
}

int main() {
    scanf("%d%d", &n, &m);
    while (m--) {
        int x, y, w;
        scanf("%d%d%d", &x, &y, &w);
        if (w == 1) {
            tree[x].push_back(y);
            tree[y].push_back(x);
        } else {
            adj[x].push_back({ y, w });
            adj[y].push_back({ x, w });
        }
    }
    dfs_child(0);
    dfs_sz(0);
    dfs_hld(0);
    dfs_dist(0);
    dfs_rev_dist(0);
    dfs_edge(0);
    for (int i = 0; i < n; i++) sp[0][i] = par[i];
    for (int t = 1; t < 18; t++) for (int i = 0; i < n; i++) {
        if (sp[t - 1][i] == -1) sp[t][i] = -1;
        else sp[t][i] = sp[t - 1][sp[t - 1][i]];
    }
    for (int i = 0; i < n; i++) {
        tree_dist[262143 + in[i]] = dist[i];
        tree_edge[262143 + in[i]] = edge[i];
    }
    for (int i = 262142; i >= 0; i--) {
        tree_dist[i] = max(tree_dist[i * 2 + 1], tree_dist[i * 2 + 2]);
        tree_edge[i] = max(tree_edge[i * 2 + 1], tree_edge[i * 2 + 2]);
    }
    for (int i = 0; i < n; i++) for (auto &j: tree[i]) lt_depth[i].insert(max_depth[j]);
    int zero = 2 * (n - 1) - dist[0], one = (int)1e9;
    for (int i = 0; i < n; i++) {
        dfs(i);
        for (auto &j: adj[i]) if (i < j.first) {
            int l = lca(i, j.first);
            int ds = depth[i] + depth[j.first] - depth[l] - depth[l];
            int curr = j.second + 2 * (n - 1) - ds - 1;
            int x = j.first, pv = -1;
            vector<pair<int, int>> v;
            int y = max(rev_dist[l] - 1, query_hld_dist(i, j.first, in[l], in[l] + sz[l] - 1) - 1), T = 0;
            int A = (i == l ? -1 : pr(i, depth[i] - depth[l] - 1));
            int B = (j.first == l ? -1 : pr(j.first, depth[j.first] - depth[l] - 1));
            int Ap = (depth[i] - depth[l] - 2 >= 0 ? pr(i, depth[i] - depth[l] - 2) : -1);
            int Bp = (depth[j.first] - depth[l] - 2 >= 0 ? pr(j.first, depth[j.first] - depth[l] - 2) : -1);
            if ((int)lt_depth[l].size() > 2) {
                if (A != -1) lt_depth[l].erase(lt_depth[l].find(max_depth[A]));
                if (B != -1) lt_depth[l].erase(lt_depth[l].find(max_depth[B]));
                if (!lt_depth[l].empty()) y = max(y, *lt_depth[l].rbegin() + rev_max_depth[l]);
                if ((int)lt_depth[l].size() > 1) y = max(y, *lt_depth[l].rbegin() + *prev(prev(lt_depth[l].end())) - 1);
                if (A != -1) lt_depth[l].insert(max_depth[A]);
                if (B != -1) lt_depth[l].insert(max_depth[B]);
            }
            if (Ap != -1) y = max(y, query_hld_edge(Ap, i) - 1);
            if (Bp != -1) y = max(y, query_hld_edge(Bp, j.first) - 1);
            while (x != -1) {
                for (auto &k: tree[x]) if (k != pv && k != _par[x]) {
                    if (_sz[k]) {
                        if (!v.empty() && v.back().second == T) {
                            v.back().first = max(v.back().first, _sz[k]);
                        } else v.push_back({ _sz[k], T });
                    }
                }
                T++;
                pv = x;
                x = _par[x];
            }
            int ans = -(int)1e9;
            for (int i = 0; i < (int)v.size(); i++) {
                if (i) ans -= v[i].second - v[i - 1].second;
                y = max(y, ans + v[i].first + 1);
                ans = max(ans, v[i].first);
            }
            curr -= y;
            one = min(one, curr);
        }
    }
    printf("%d", min(zero, one));
}

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:175:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  175 |     scanf("%d%d", &n, &m);
      |     ~~~~~^~~~~~~~~~~~~~~~
Main.cpp:178:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  178 |         scanf("%d%d%d", &x, &y, &w);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 15 ms 25932 KB Output is correct
2 Correct 12 ms 25888 KB Output is correct
3 Correct 12 ms 25896 KB Output is correct
4 Incorrect 12 ms 25996 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 25932 KB Output is correct
2 Correct 12 ms 25888 KB Output is correct
3 Correct 12 ms 25896 KB Output is correct
4 Incorrect 12 ms 25996 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 816 ms 28776 KB Output is correct
2 Correct 838 ms 29196 KB Output is correct
3 Incorrect 784 ms 28288 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 25932 KB Output is correct
2 Correct 12 ms 25888 KB Output is correct
3 Correct 12 ms 25896 KB Output is correct
4 Incorrect 12 ms 25996 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 25932 KB Output is correct
2 Correct 12 ms 25888 KB Output is correct
3 Correct 12 ms 25896 KB Output is correct
4 Incorrect 12 ms 25996 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 25932 KB Output is correct
2 Correct 12 ms 25888 KB Output is correct
3 Correct 12 ms 25896 KB Output is correct
4 Incorrect 12 ms 25996 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 25932 KB Output is correct
2 Correct 12 ms 25888 KB Output is correct
3 Correct 12 ms 25896 KB Output is correct
4 Incorrect 12 ms 25996 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 25932 KB Output is correct
2 Correct 12 ms 25888 KB Output is correct
3 Correct 12 ms 25896 KB Output is correct
4 Incorrect 12 ms 25996 KB Output isn't correct
5 Halted 0 ms 0 KB -