답안 #499210

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
499210 2021-12-27T13:03:22 Z 600Mihnea Golf (JOI17_golf) C++17
30 / 100
10000 ms 623180 KB
#include <bits/stdc++.h>

using namespace std;

#define y1 ynot1

typedef long long ll;
typedef long double ld;

struct Box {
  int xmin;
  int xmax;
  int ymin;
  int ymax;

};

const int N = 100000 + 7;
const int INF = (int) 1e9 + 7;

int n;
int x1;
int y1;
int x2;
int y2;
Box boxes[N];

void normalization() {
  map<int, int> mx, my;

  for (int i = 0; i <= n + 1; i++) {
    mx[boxes[i].xmin] = 0;
    mx[boxes[i].xmax] = 0;

    my[boxes[i].ymin] = 0;
    my[boxes[i].ymax] = 0;
  }

  int c = 0;
  for (auto &it : mx) {
    it.second = ++c;
  }

  c = 0;
  for (auto &it : my) {
    it.second = ++c;
  }


  for (int i = 0; i <= n + 1; i++) {
    boxes[i].xmin = mx[boxes[i].xmin];
    boxes[i].xmax = mx[boxes[i].xmax];

    boxes[i].ymin = my[boxes[i].ymin];
    boxes[i].ymax = my[boxes[i].ymax];
  }
}

struct Segment {
  int where;
  int low;
  int high;
  int e_low;
  int e_high;
  int dp;
};

/**

segment tree of lasts

**/

struct Node {
  int mn;
  int mx;
};

Node operator + (Node a, Node b) {
  return {min(a.mn, b.mn), max(a.mx, b.mx)};
}

const Node non = {2 * N, 0};
Node segt1[8 * N];
Node lazy1[8 * N];

void push(int v, int tl, int tr) {
  if (lazy1[v].mn == non.mn && lazy1[v].mx == non.mx) {
    return;
  }

  segt1[v] = segt1[v] + lazy1[v];

  if (tl < tr) {
    lazy1[2 * v] = lazy1[2 * v] + lazy1[v];
    lazy1[2 * v + 1] = lazy1[2 * v + 1] + lazy1[v];
  }

  lazy1[v] = non;
}

void updsegt1(int v, int tl, int tr, int l, int r, int x) {
  push(v, tl, tr);
  if (tr < l || r < tl) {
    return;
  }
  if (l <= tl && tr <= r) {
    lazy1[v] = lazy1[v] + Node{x, x};
    push(v, tl, tr);
    return;
  }
  int tm = (tl + tr) / 2;
  updsegt1(2 * v, tl, tm, l, r, x);
  updsegt1(2 * v + 1, tm + 1, tr, l, r, x);
  segt1[v] = segt1[2 * v] + segt1[2 * v + 1];
}

void updsegt1(int l, int r, int x) {
  if (l > r) {
    return;
  }
  assert(1 <= l && l <= r && r <= 2 * (n + 2));
  updsegt1(1, 1, 2 * (n + 2), l, r, x);
}

Node getsegt1(int v, int tl, int tr, int l, int r) {
  push(v, tl, tr);
  if (tr < l || r < tl) {
    return non;
  }
  if (l <= tl && tr <= r) {
    return segt1[v];
  }
  int tm = (tl + tr) / 2;
  return getsegt1(2 * v, tl, tm, l, r) + getsegt1(2 * v + 1, tm + 1, tr, l, r);
}

Node getsegt1(int l, int r) {
  return getsegt1(1, 1, 2 * (n + 2), l, r);
}

void clr() {
  for (int i = 0; i < 8 * N; i++) {
    segt1[i] = non;
    lazy1[i] = non;
  }
}


vector<vector<Segment>> segs;
vector<Segment> xSegs;
vector<Segment> ySegs;

bool cmpextlowX(int i, int j) {
  return xSegs[i].low < xSegs[j].low;
}

bool cmpexthighX(int i, int j) {
  return xSegs[i].high > xSegs[j].high;
}

bool cmpextY(int i, int j) {
  return ySegs[i].where < ySegs[j].where;
}

bool cmp(int i, int j) {
  return xSegs[i].e_low < xSegs[j].e_low;
}

void calculateextensions() {

  for (int step = 1; step <= 2; step++) {
    /// calculate x segs
    for (int i = 0; i <= n + 1; i++) {
      xSegs.push_back({boxes[i].ymin, boxes[i].xmin, boxes[i].xmax, 0, 2 * N, -1});
      xSegs.push_back({boxes[i].ymax, boxes[i].xmin, boxes[i].xmax, 0, 2 * N, -1});
    }

    for (int i = 0; i <= n + 1; i++) {
      swap(boxes[i].xmin, boxes[i].ymin);
      swap(boxes[i].xmax, boxes[i].ymax);
    }

    swap(xSegs, ySegs);
  }

  assert((int) xSegs.size() == 2 * (n + 2));
  assert((int) ySegs.size() == 2 * (n + 2));

  for (int step = 1; step <= 2; step++) {
    /// compute the extensions

    {
      vector<int> ordx(2 * (n + 2)), ordy;
      iota(ordx.begin(), ordx.end(), 0);
      ordy = ordx;
      sort(ordx.begin(), ordx.end(), cmpextlowX);
      sort(ordy.begin(), ordy.end(), cmpextY);

      {
        clr();
        int ptr = 0;
        for (int it = 0; it < 2 * (n + 2); it++) {
          int i = ordx[it];


          while (ptr < 2 * (n + 2) && ySegs[ordy[ptr]].where < xSegs[i].low) {
            updsegt1(ySegs[ordy[ptr]].low + 1, ySegs[ordy[ptr]].high - 1, ySegs[ordy[ptr]].where);
            ptr++;
          }

          xSegs[i].e_low = getsegt1(xSegs[i].where, xSegs[i].where).mx;
        }
      }

      {
        reverse(ordx.begin(), ordx.end()); /// optimization, daca nu merge, incearca cmpexthighX
        reverse(ordy.begin(), ordy.end());

        clr();
        int ptr = 0;
        for (int it = 0; it < 2 * (n + 2); it++) {
          int i = ordx[it];


          while (ptr < 2 * (n + 2) && ySegs[ordy[ptr]].where > xSegs[i].high) {
            updsegt1(ySegs[ordy[ptr]].low + 1, ySegs[ordy[ptr]].high - 1, ySegs[ordy[ptr]].where);
            ptr++;
          }

          xSegs[i].e_high = getsegt1(xSegs[i].where, xSegs[i].where).mn;
        }
      }

    }


    /// checker

    for (auto &it : xSegs) {
      assert(it.e_low <= it.low);
      assert(it.high <= it.e_high);
    }

    swap(xSegs, ySegs);
  }
  segs.push_back(xSegs);
  segs.push_back(ySegs);
}

queue<pair<int, int>> q;
bool deja[2][2 * N];

int done;

void addToQ(int type, int index, int value) {
  done++;
  deja[type][index] = 1;
  assert(0 <= type && type < 2);
  assert(0 <= index && index < (int) segs[type].size());
  assert(segs[type][index].dp == -1);
  segs[type][index].dp = value;
  q.push({type, index});
}

struct Snode {
  int index;
  int l;
  int r;
};

bool operator < (Snode a, Snode b) {
  if (a.l != b.l) {
    return a.l < b.l;
  }
  return a.index < b.index;
}

set<Snode> guys[2][2 * N];
set<Snode> path[2][8 * N];
int cnt[2][8 * N];
vector<int> now;

set<int> ct;

void addToSegt(int type, int v, int tl, int tr, int i, Snode node) {
  if (tr < i || i < tl) {
    return;
  }
  path[type][v].insert(node);
  if (tl == tr) {
    guys[type][tl].insert(node);
    assert(!ct.count(node.index));
    ct.insert(node.index);

    cnt[type][v] = (int) guys[type][tl].size();
    return;
  }
  int tm = (tl + tr) / 2;
  addToSegt(type, 2 * v, tl, tm, i, node);
  addToSegt(type, 2 * v + 1, tm + 1, tr, i, node);
  cnt[type][v] = cnt[type][2 * v] + cnt[type][2 * v + 1];
}

void del(int type, int v, int tl, int tr, int l, int r, int i) {
  if (cnt[type][v] == 0) {
    return;
  }
  if (tr < l || r < tl) {
    return;
  }
  if (l <= tl && tr <= r && 0) {
    bool ok = 0;
    while (!path[type][v].empty()) {
      auto it = path[type][v].begin();
      if (it->l <= i && it->r >= i) {
        if (deja[type][it->index]) {path[type][v].erase(it); continue;}
        ok = 1;
        break;
      } else {
        break;
      }
    }
    while (!path[type][v].empty()) {
      auto it = path[type][v].lower_bound({-1, i + 1, -1});
      if (it == path[type][v].begin()) {
        break;
      }
      it--;
      assert(it->l <= i);
      if (it->l <= i && it->r >= i) {
        if (deja[type][it->index]) {path[type][v].erase(it); continue;}
        ok = 1;
        break;
      } else {
        break;
      }
    }
    if (!ok) {
      return;
    }
  }
  if (tl == tr) {
    while (!guys[type][tl].empty()) {
      auto it = guys[type][tl].begin();
      if (it->l <= i && it->r >= i) {
        if (!deja[type][it->index]) now.push_back(it->index);
        guys[type][tl].erase(it);
      } else {
        break;
      }
    }
    while (!guys[type][tl].empty()) {
      auto it = guys[type][tl].lower_bound({-1, i + 1, -1});
      if (it == guys[type][tl].begin()) {
        break;
      }
      it--;
      assert(it->l <= i);
      if (it->l <= i && it->r >= i) {
        if (!deja[type][it->index]) now.push_back(it->index);
        guys[type][tl].erase(it);
      } else {
        break;
      }
    }
    cnt[type][v] = (int) guys[type][tl].size();
    return;
  }
  int tm = (tl + tr) / 2;
  del(type, 2 * v, tl, tm, l, r, i);
  del(type, 2 * v + 1, tm + 1, tr, l, r, i);
  cnt[type][v] = cnt[type][2 * v] + cnt[type][2 * v + 1];
}

signed main() {
  ios::sync_with_stdio(0); cin.tie(0);

 /// freopen ("input2", "r", stdin);

  cin >> x1 >> y1 >> x2 >> y2;
  cin >> n;
  for (int i = 1; i <= n; i++) {
    cin >> boxes[i].xmin >> boxes[i].xmax >> boxes[i].ymin >> boxes[i].ymax;
  }

  boxes[0].xmin = boxes[0].xmax = x1;
  boxes[0].ymin = boxes[0].ymax = y1;

  boxes[n + 1].xmin = boxes[n + 1].xmax = x2;
  boxes[n + 1].ymin = boxes[n + 1].ymax = y2;

  normalization(); /// do it later

  calculateextensions();


  if (n > 1000) {
    /// exit(0); /// I wanted to measure the first part of the algorithm
  }

  addToQ(0, 0, 1);
  addToQ(0, 1, 1);
  addToQ(1, 0, 1);
  addToQ(1, 1, 1);


  for (int type = 0; type < 2; type++) {
    for (int i = 0; i < 2 * (n + 2); i++) {
      addToSegt(type, 1, 1, 2 * (n + 2), segs[type][i].where, {i, segs[type][i].e_low, segs[type][i].e_high});
    }
    ct.clear();
  }

  while (!q.empty()) {
    if (n > 1000 && done >= 15000) {
      exit(0);
    }
    auto itQ = q.front();
    q.pop();
    int type = itQ.first;
    int index = itQ.second;


    int dp = segs[type][index].dp;

    assert(2 * (n + 2) == (int) segs[type ^ 1].size());

    now.clear();
    del(type ^ 1, 1, 1, 2 * (n + 2), segs[type][index].e_low, segs[type][index].e_high, segs[type][index].where);

    for (auto &j : now) {
      addToQ(type ^ 1, j, segs[type][index].dp + 1);
    }
  }

  for (auto &v : segs) {
    for (auto &seg : v) {
      assert(seg.dp != -1);
    }
  }

  x2 = boxes[n + 1].xmin;
  y2 = boxes[n + 1].ymin;

  int sol = INF;

  swap(x2, y2);

  for (auto &v : segs) {
    for (auto &seg : v) {
      if (x2 == seg.where && seg.e_low <= y2 && y2 <= seg.e_high) {
        sol = min(sol, seg.dp);
      }
    }
    swap(x2, y2);
  }

  cout << sol << "\n";


  return 0;
}

Compilation message

golf.cpp: In function 'int main()':
golf.cpp:425:9: warning: unused variable 'dp' [-Wunused-variable]
  425 |     int dp = segs[type][index].dp;
      |         ^~
# 결과 실행 시간 메모리 Grader output
1 Correct 50 ms 106740 KB Output is correct
2 Correct 50 ms 106688 KB Output is correct
3 Correct 51 ms 106824 KB Output is correct
4 Correct 53 ms 107004 KB Output is correct
5 Correct 77 ms 110216 KB Output is correct
6 Correct 77 ms 110276 KB Output is correct
7 Correct 73 ms 110276 KB Output is correct
8 Correct 78 ms 110336 KB Output is correct
9 Correct 74 ms 110276 KB Output is correct
10 Correct 84 ms 110400 KB Output is correct
11 Correct 74 ms 110280 KB Output is correct
12 Correct 77 ms 110328 KB Output is correct
13 Correct 74 ms 110380 KB Output is correct
14 Correct 75 ms 110372 KB Output is correct
15 Correct 62 ms 108132 KB Output is correct
16 Correct 92 ms 109692 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 50 ms 106740 KB Output is correct
2 Correct 50 ms 106688 KB Output is correct
3 Correct 51 ms 106824 KB Output is correct
4 Correct 53 ms 107004 KB Output is correct
5 Correct 77 ms 110216 KB Output is correct
6 Correct 77 ms 110276 KB Output is correct
7 Correct 73 ms 110276 KB Output is correct
8 Correct 78 ms 110336 KB Output is correct
9 Correct 74 ms 110276 KB Output is correct
10 Correct 84 ms 110400 KB Output is correct
11 Correct 74 ms 110280 KB Output is correct
12 Correct 77 ms 110328 KB Output is correct
13 Correct 74 ms 110380 KB Output is correct
14 Correct 75 ms 110372 KB Output is correct
15 Correct 62 ms 108132 KB Output is correct
16 Correct 92 ms 109692 KB Output is correct
17 Correct 77 ms 110320 KB Output is correct
18 Correct 84 ms 110252 KB Output is correct
19 Correct 78 ms 110360 KB Output is correct
20 Correct 81 ms 110284 KB Output is correct
21 Correct 83 ms 110436 KB Output is correct
22 Correct 80 ms 110388 KB Output is correct
23 Correct 81 ms 110388 KB Output is correct
24 Correct 84 ms 110336 KB Output is correct
25 Correct 79 ms 110368 KB Output is correct
26 Correct 80 ms 110280 KB Output is correct
27 Correct 71 ms 108328 KB Output is correct
28 Correct 97 ms 109852 KB Output is correct
29 Correct 102 ms 109924 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 50 ms 106740 KB Output is correct
2 Correct 50 ms 106688 KB Output is correct
3 Correct 51 ms 106824 KB Output is correct
4 Correct 53 ms 107004 KB Output is correct
5 Correct 77 ms 110216 KB Output is correct
6 Correct 77 ms 110276 KB Output is correct
7 Correct 73 ms 110276 KB Output is correct
8 Correct 78 ms 110336 KB Output is correct
9 Correct 74 ms 110276 KB Output is correct
10 Correct 84 ms 110400 KB Output is correct
11 Correct 74 ms 110280 KB Output is correct
12 Correct 77 ms 110328 KB Output is correct
13 Correct 74 ms 110380 KB Output is correct
14 Correct 75 ms 110372 KB Output is correct
15 Correct 62 ms 108132 KB Output is correct
16 Correct 92 ms 109692 KB Output is correct
17 Correct 77 ms 110320 KB Output is correct
18 Correct 84 ms 110252 KB Output is correct
19 Correct 78 ms 110360 KB Output is correct
20 Correct 81 ms 110284 KB Output is correct
21 Correct 83 ms 110436 KB Output is correct
22 Correct 80 ms 110388 KB Output is correct
23 Correct 81 ms 110388 KB Output is correct
24 Correct 84 ms 110336 KB Output is correct
25 Correct 79 ms 110368 KB Output is correct
26 Correct 80 ms 110280 KB Output is correct
27 Correct 71 ms 108328 KB Output is correct
28 Correct 97 ms 109852 KB Output is correct
29 Correct 102 ms 109924 KB Output is correct
30 Execution timed out 10042 ms 623180 KB Time limit exceeded
31 Halted 0 ms 0 KB -