Submission #49811

# Submission time Handle Problem Language Result Execution time Memory
49811 2018-06-03T09:38:40 Z 강태규(#1279, imeimi2000) None (JOI16_solitaire) C++11
100 / 100
98 ms 35072 KB
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <unordered_map>
#include <functional>
#include <cstring>
#include <cmath>
#include <ctime>
#include <cstdlib>

using namespace std;
typedef long long llong;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<llong, llong> pll;

const int mod = 1e9 + 7;
int n;
char grid[3][2001];
int dp[2001][6001][2];
int fact[6001];

void fail() {
    printf("0\n");
    exit(0);
}

int pow(int x, int p) {
    if (p == 0) return 1;
    if (p == 1) return x;
    int ret = pow(x, p >> 1);
    ret = (llong)ret * ret % mod;
    if (p & 1) ret = (llong)ret * x % mod;
    return ret;
}

int nP2(int x) {
    return (llong)x * (x - 1) % mod;
}

pii getCount(int s, int e) {
    if (e <= s) return pii(1, 0);
    int n = e - s;
    vector<int> cnt(n + 1, 0);
    vector<int> sum(n + 1, 0);
    for (int i = s; i < e; ++i) {
        cnt[i - s + 1] = (grid[0][i] == 'x') + (grid[2][i] == 'x') + 1;
        sum[i - s + 1] = sum[i - s] + cnt[i - s + 1];
    }
    dp[0][0][0] = 0;
    dp[0][0][1] = 1;
    for (int i = 0; i < n; ++i) {
        for (int j = 1; j < sum[i + 1]; ++j) {
            dp[i][j][0] = 0;
            dp[i][j][1] = 0;
        }
    }
    for (int i = 1; i <= n; ++i) {
        if (cnt[i] == 1) {
            for (int j = 1; j <= sum[i]; ++j) {
                dp[i][j][0] = 0;
                
                dp[i][j][1] = dp[i - 1][sum[i - 1]][1];
                dp[i][j][1] += dp[i - 1][sum[i - 1]][0];
                dp[i][j][1] %= mod;
                dp[i][j][1] += mod - dp[i - 1][j - 1][0];
                dp[i][j][1] %= mod;
            }
        }
        else if (cnt[i] == 2) {
            for (int j = 1; j <= sum[i]; ++j) {
                dp[i][j][0] = (llong)dp[i - 1][j - 1][1] * (sum[i] - j) % mod;
                
                dp[i][j][1] = (llong)dp[i - 1][sum[i - 1]][1] * (j - 1) % mod;
                if (j > 1) dp[i][j][1] += (llong)(dp[i - 1][sum[i - 1]][0] - dp[i - 1][j - 2][0] + mod) * (j - 1) % mod;
                dp[i][j][1] %= mod;
            }
        }
        else {
            for (int j = 1; j <= sum[i]; ++j) {
                dp[i][j][0] = (llong)dp[i - 1][j - 1][1] * nP2(sum[i] - j) % mod;
                if (j > 1) dp[i][j][0] += (llong)dp[i - 1][j - 2][1] * (sum[i] - j) % mod * (j - 1) * 2 % mod;
                dp[i][j][0] %= mod;
                
                dp[i][j][1] = (llong)dp[i - 1][sum[i - 1]][1] * nP2(j - 1) % mod;
                dp[i][j][1] += (llong)(dp[i - 1][sum[i - 1]][0] - dp[i - 1][j - 1][0] + mod) * nP2(j - 1) % mod;
                dp[i][j][1] %= mod;
            }
        }
        for (int j = 1; j <= sum[i]; ++j) {
            dp[i][j][0] += dp[i][j - 1][0];
            dp[i][j][0] %= mod;
            dp[i][j][1] += dp[i][j - 1][1];
            dp[i][j][1] %= mod;
        }
    }
    return pii((dp[n][sum[n]][0] + dp[n][sum[n]][1]) % mod, sum[n]);
}



int main() {
    scanf("%d", &n);
    scanf("%s", grid[0]);
    scanf("%s", grid[1]);
    scanf("%s", grid[2]);
    if (grid[0][0] == 'x') fail();
    if (grid[2][0] == 'x') fail();
    if (grid[0][n - 1] == 'x') fail();
    if (grid[2][n - 1] == 'x') fail();
    for (int i = 1; i < n - 2; ++i) {
        if (grid[0][i] == 'x' && grid[0][i + 1] == 'x') fail();
        if (grid[2][i] == 'x' && grid[2][i + 1] == 'x') fail();
    }
    fact[0] = 1;
    for (int i = 1; i <= 3 * n; ++i) {
        fact[i] = (llong)fact[i - 1] * i % mod;
    }
    vector<pii> ans;
    int p = 0;
    for (int i = 0; i < n; ++i) {
        if (grid[1][i] == 'o') {
            ans.push_back(getCount(p, i));
            int c = (grid[0][i] == 'x') + (grid[2][i] == 'x');
            if (c) ans.emplace_back(c, c);
            p = i + 1;
        }
    }
    ans.push_back(getCount(p, n));
    int sum = 0;
    for (pii i : ans) {
        sum += i.second;
    }
    
    int x = fact[sum], y = 1;
    for (pii i : ans) {
        x = (llong)x * i.first % mod;
        y = (llong)y * fact[i.second] % mod;
    }
    x = (llong)x * pow(y, mod - 2) % mod;
    printf("%d\n", x);
	return 0;
}

Compilation message

solitaire.cpp: In function 'int main()':
solitaire.cpp:107:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%d", &n);
     ~~~~~^~~~~~~~~~
solitaire.cpp:108:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%s", grid[0]);
     ~~~~~^~~~~~~~~~~~~~~
solitaire.cpp:109:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%s", grid[1]);
     ~~~~~^~~~~~~~~~~~~~~
solitaire.cpp:110:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%s", grid[2]);
     ~~~~~^~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 432 KB Output is correct
4 Correct 3 ms 596 KB Output is correct
5 Correct 2 ms 596 KB Output is correct
6 Correct 2 ms 596 KB Output is correct
7 Correct 2 ms 596 KB Output is correct
8 Correct 2 ms 596 KB Output is correct
9 Correct 3 ms 596 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 620 KB Output is correct
12 Correct 2 ms 620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 620 KB Output is correct
2 Correct 2 ms 620 KB Output is correct
3 Correct 2 ms 676 KB Output is correct
4 Correct 2 ms 676 KB Output is correct
5 Correct 3 ms 676 KB Output is correct
6 Correct 2 ms 676 KB Output is correct
7 Correct 2 ms 676 KB Output is correct
8 Correct 3 ms 676 KB Output is correct
9 Correct 3 ms 676 KB Output is correct
10 Correct 2 ms 676 KB Output is correct
11 Correct 2 ms 676 KB Output is correct
12 Correct 2 ms 676 KB Output is correct
13 Correct 6 ms 2284 KB Output is correct
14 Correct 7 ms 2924 KB Output is correct
15 Correct 9 ms 4972 KB Output is correct
16 Correct 8 ms 4972 KB Output is correct
17 Correct 10 ms 4972 KB Output is correct
18 Correct 8 ms 4972 KB Output is correct
19 Correct 8 ms 4972 KB Output is correct
20 Correct 10 ms 4972 KB Output is correct
21 Correct 9 ms 4972 KB Output is correct
22 Correct 11 ms 5372 KB Output is correct
23 Correct 9 ms 5372 KB Output is correct
24 Correct 11 ms 5372 KB Output is correct
25 Correct 10 ms 5372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5372 KB Output is correct
2 Correct 2 ms 5372 KB Output is correct
3 Correct 2 ms 5372 KB Output is correct
4 Correct 3 ms 5372 KB Output is correct
5 Correct 2 ms 5372 KB Output is correct
6 Correct 2 ms 5372 KB Output is correct
7 Correct 8 ms 5372 KB Output is correct
8 Correct 2 ms 5372 KB Output is correct
9 Correct 3 ms 5372 KB Output is correct
10 Correct 2 ms 5372 KB Output is correct
11 Correct 2 ms 5372 KB Output is correct
12 Correct 3 ms 5372 KB Output is correct
13 Correct 3 ms 5372 KB Output is correct
14 Correct 2 ms 5372 KB Output is correct
15 Correct 2 ms 5372 KB Output is correct
16 Correct 2 ms 5372 KB Output is correct
17 Correct 2 ms 5372 KB Output is correct
18 Correct 2 ms 5372 KB Output is correct
19 Correct 3 ms 5372 KB Output is correct
20 Correct 2 ms 5372 KB Output is correct
21 Correct 2 ms 5372 KB Output is correct
22 Correct 2 ms 5372 KB Output is correct
23 Correct 2 ms 5372 KB Output is correct
24 Correct 2 ms 5372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 432 KB Output is correct
4 Correct 3 ms 596 KB Output is correct
5 Correct 2 ms 596 KB Output is correct
6 Correct 2 ms 596 KB Output is correct
7 Correct 2 ms 596 KB Output is correct
8 Correct 2 ms 596 KB Output is correct
9 Correct 3 ms 596 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 620 KB Output is correct
12 Correct 2 ms 620 KB Output is correct
13 Correct 3 ms 5372 KB Output is correct
14 Correct 2 ms 5372 KB Output is correct
15 Correct 2 ms 5372 KB Output is correct
16 Correct 3 ms 5372 KB Output is correct
17 Correct 2 ms 5372 KB Output is correct
18 Correct 2 ms 5372 KB Output is correct
19 Correct 8 ms 5372 KB Output is correct
20 Correct 2 ms 5372 KB Output is correct
21 Correct 3 ms 5372 KB Output is correct
22 Correct 2 ms 5372 KB Output is correct
23 Correct 2 ms 5372 KB Output is correct
24 Correct 3 ms 5372 KB Output is correct
25 Correct 3 ms 5372 KB Output is correct
26 Correct 2 ms 5372 KB Output is correct
27 Correct 2 ms 5372 KB Output is correct
28 Correct 2 ms 5372 KB Output is correct
29 Correct 2 ms 5372 KB Output is correct
30 Correct 2 ms 5372 KB Output is correct
31 Correct 3 ms 5372 KB Output is correct
32 Correct 2 ms 5372 KB Output is correct
33 Correct 2 ms 5372 KB Output is correct
34 Correct 2 ms 5372 KB Output is correct
35 Correct 2 ms 5372 KB Output is correct
36 Correct 2 ms 5372 KB Output is correct
37 Correct 2 ms 5372 KB Output is correct
38 Correct 7 ms 5372 KB Output is correct
39 Correct 2 ms 5372 KB Output is correct
40 Correct 2 ms 5372 KB Output is correct
41 Correct 2 ms 5372 KB Output is correct
42 Correct 2 ms 5372 KB Output is correct
43 Correct 2 ms 5372 KB Output is correct
44 Correct 2 ms 5372 KB Output is correct
45 Correct 2 ms 5372 KB Output is correct
46 Correct 3 ms 5372 KB Output is correct
47 Correct 5 ms 5372 KB Output is correct
48 Correct 2 ms 5372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 432 KB Output is correct
4 Correct 3 ms 596 KB Output is correct
5 Correct 2 ms 596 KB Output is correct
6 Correct 2 ms 596 KB Output is correct
7 Correct 2 ms 596 KB Output is correct
8 Correct 2 ms 596 KB Output is correct
9 Correct 3 ms 596 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 620 KB Output is correct
12 Correct 2 ms 620 KB Output is correct
13 Correct 2 ms 620 KB Output is correct
14 Correct 2 ms 620 KB Output is correct
15 Correct 2 ms 676 KB Output is correct
16 Correct 2 ms 676 KB Output is correct
17 Correct 3 ms 676 KB Output is correct
18 Correct 2 ms 676 KB Output is correct
19 Correct 2 ms 676 KB Output is correct
20 Correct 3 ms 676 KB Output is correct
21 Correct 3 ms 676 KB Output is correct
22 Correct 2 ms 676 KB Output is correct
23 Correct 2 ms 676 KB Output is correct
24 Correct 2 ms 676 KB Output is correct
25 Correct 6 ms 2284 KB Output is correct
26 Correct 7 ms 2924 KB Output is correct
27 Correct 9 ms 4972 KB Output is correct
28 Correct 8 ms 4972 KB Output is correct
29 Correct 10 ms 4972 KB Output is correct
30 Correct 8 ms 4972 KB Output is correct
31 Correct 8 ms 4972 KB Output is correct
32 Correct 10 ms 4972 KB Output is correct
33 Correct 9 ms 4972 KB Output is correct
34 Correct 11 ms 5372 KB Output is correct
35 Correct 9 ms 5372 KB Output is correct
36 Correct 11 ms 5372 KB Output is correct
37 Correct 10 ms 5372 KB Output is correct
38 Correct 3 ms 5372 KB Output is correct
39 Correct 2 ms 5372 KB Output is correct
40 Correct 2 ms 5372 KB Output is correct
41 Correct 3 ms 5372 KB Output is correct
42 Correct 2 ms 5372 KB Output is correct
43 Correct 2 ms 5372 KB Output is correct
44 Correct 8 ms 5372 KB Output is correct
45 Correct 2 ms 5372 KB Output is correct
46 Correct 3 ms 5372 KB Output is correct
47 Correct 2 ms 5372 KB Output is correct
48 Correct 2 ms 5372 KB Output is correct
49 Correct 3 ms 5372 KB Output is correct
50 Correct 3 ms 5372 KB Output is correct
51 Correct 2 ms 5372 KB Output is correct
52 Correct 2 ms 5372 KB Output is correct
53 Correct 2 ms 5372 KB Output is correct
54 Correct 2 ms 5372 KB Output is correct
55 Correct 2 ms 5372 KB Output is correct
56 Correct 3 ms 5372 KB Output is correct
57 Correct 2 ms 5372 KB Output is correct
58 Correct 2 ms 5372 KB Output is correct
59 Correct 2 ms 5372 KB Output is correct
60 Correct 2 ms 5372 KB Output is correct
61 Correct 2 ms 5372 KB Output is correct
62 Correct 2 ms 5372 KB Output is correct
63 Correct 7 ms 5372 KB Output is correct
64 Correct 2 ms 5372 KB Output is correct
65 Correct 2 ms 5372 KB Output is correct
66 Correct 2 ms 5372 KB Output is correct
67 Correct 2 ms 5372 KB Output is correct
68 Correct 2 ms 5372 KB Output is correct
69 Correct 2 ms 5372 KB Output is correct
70 Correct 2 ms 5372 KB Output is correct
71 Correct 3 ms 5372 KB Output is correct
72 Correct 5 ms 5372 KB Output is correct
73 Correct 2 ms 5372 KB Output is correct
74 Correct 2 ms 5372 KB Output is correct
75 Correct 2 ms 5372 KB Output is correct
76 Correct 2 ms 5372 KB Output is correct
77 Correct 2 ms 5372 KB Output is correct
78 Correct 2 ms 5372 KB Output is correct
79 Correct 3 ms 5372 KB Output is correct
80 Correct 3 ms 5372 KB Output is correct
81 Correct 2 ms 5372 KB Output is correct
82 Correct 2 ms 5372 KB Output is correct
83 Correct 2 ms 5372 KB Output is correct
84 Correct 2 ms 5372 KB Output is correct
85 Correct 2 ms 5372 KB Output is correct
86 Correct 87 ms 34944 KB Output is correct
87 Correct 78 ms 34944 KB Output is correct
88 Correct 88 ms 34944 KB Output is correct
89 Correct 79 ms 34944 KB Output is correct
90 Correct 80 ms 34944 KB Output is correct
91 Correct 87 ms 35068 KB Output is correct
92 Correct 98 ms 35068 KB Output is correct
93 Correct 76 ms 35068 KB Output is correct
94 Correct 78 ms 35072 KB Output is correct
95 Correct 76 ms 35072 KB Output is correct
96 Correct 76 ms 35072 KB Output is correct
97 Correct 74 ms 35072 KB Output is correct