답안 #497588

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
497588 2021-12-23T10:19:54 Z 600Mihnea Cats or Dogs (JOI18_catdog) C++17
38 / 100
3000 ms 28432 KB
#include "catdog.h"
#include <bits/stdc++.h>

using namespace std;

const int N = (int) 1e5 + 7;
const int INF = (int) 1e8;
int n, sub[N], child[N], color[N], par[N], y, dp1[N], dp2[N], cost1[N], cost2[N], theindex[N], curind, node[N], l1[N], l2[N];
vector<int> members[N];
bool isTheChild[N];
vector<int> g[N];

struct D {
  bool nmc;
  int cost[2][2];
};

D operator + (D a, D b) {
  if (a.nmc) {
    return b;
  }
  if (b.nmc) {
    return a;
  }
  D c;
  c.nmc = 0;
  for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 2; j++) {
      c.cost[i][j] = INF;
    }
  }
  for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 2; j++) {
      for (int k = 0; k < 2; k++) {
        for (int l = 0; l < 2; l++) {
          c.cost[i][l] = min(c.cost[i][l], a.cost[i][j] + b.cost[k][l] + (j != k));
        }
      }
    }
  }
  return c;
}

D t[4 * N];
D wnmc;

void upd(int v, int tl, int tr, int i) {
  if (tr < i || i < tl) {
    return;
  }
  if (tl == tr) {
    vector<int> K = {cost1[node[i]] + dp1[node[i]], cost2[node[i]] + dp2[node[i]]};
    t[v].cost[0][1] = t[v].cost[1][0] = INF;
    t[v].cost[0][0] = K[0];
    t[v].cost[1][1] = K[1];
    return;
  }
  int tm = (tl + tr) / 2;
  upd(2 * v, tl, tm, i);
  upd(2 * v + 1, tm + 1, tr, i);
  t[v] = t[2 * v] + t[2 * v + 1];
}

D get(int v, int tl, int tr, int l, int r) {
  if (tr < l || r < tl) {
    return wnmc;
  }
  if (l <= tl && tr <= r) {
    return t[v];
  }
  int tm = (tl + tr) / 2;
  D x = get(2 * v, tl, tm, l, r);
  D y = get(2 * v + 1, tm + 1, tr, l, r);
  D z = x + y;
  return x + y;
}

void buildtr(int v = 1, int tl = 0, int tr = n) {
  if (tl == tr) {
    t[v].cost[0][1] = t[v].cost[1][0] = INF;
    t[v].cost[0][0] = t[v].cost[1][1] = 0;
  } else {
    int tm = (tl + tr) / 2;
    buildtr(2 * v, tl, tm);
    buildtr(2 * v + 1, tm + 1, tr);
    t[v] = t[2 * v] + t[2 * v + 1];
  }
}

int getdp1(int l, int r) {
  D sol = get(1, 0, n, l, r);
  return min(sol.cost[0][0], sol.cost[0][1]);
}

int getdp2(int l, int r) {
  D sol = get(1, 0, n, l, r);
  return min(sol.cost[1][0], sol.cost[1][1]);
}

void build(int a, int p = 0) {
  vector<int> kids;
  sub[a] = 1;
  par[a] = p;
  for (auto &b : g[a]) {
    if (b != p) {
      kids.push_back(b);
      build(b, a);
      sub[a] += sub[b];
      if (sub[b] > sub[child[a]]) {
        child[a] = b;
      }
    }
  }
  isTheChild[child[a]] = 1;
  g[a] = kids;
}

void compute(int a) {
  if (isTheChild[a]) {
    color[a] = color[par[a]];
  } else {
    color[a] = ++y;
  }
  theindex[a] = ++curind;
  node[theindex[a]] = a;
  members[color[a]].push_back(a);
  if (child[a]) {
    compute(child[a]);
    for (auto &b : g[a]) {
      if (b != child[a]) {
        compute(b);
      }
    }
  }
}

void updVertex(int v) {
  int p = par[members[color[v]][0]];

  dp1[p] -= l1[color[v]];
  dp2[p] -= l2[color[v]];

  upd(1, 0, n, theindex[v]);

  l1[color[v]] = getdp1(theindex[members[color[v]][0]], theindex[members[color[v]].back()]);
  l2[color[v]] = getdp2(theindex[members[color[v]][0]], theindex[members[color[v]].back()]);

  l1[color[v]] = min(l1[color[v]], l2[color[v]] + 1);
  l2[color[v]] = min(l2[color[v]], l1[color[v]] + 1);


  dp1[p] += l1[color[v]];
  dp2[p] += l2[color[v]];
}


void update(int node) {
  while (node) {

    for (int j = 1; j < (int) members[color[node]].size(); j++) {
      assert(theindex[members[color[node]][j - 1]] == theindex[members[color[node]][j]] - 1);
    }

    int p = par[members[color[node]][0]];

    int i1 = getdp1(theindex[members[color[node]][0]], theindex[members[color[node]].back()]), i2 = getdp2(theindex[members[color[node]][0]], theindex[members[color[node]].back()]);


    updVertex(node);


    node = p;
  }
}


void initialize(int nn, std::vector<int> edgesA, std::vector<int> edgesB) {
  wnmc.nmc = 1;
  n = nn;
  buildtr();
  for (int i = 0; i < n - 1; i++) {
    int a = edgesA[i];
    int b = edgesB[i];
    g[a].push_back(b);
    g[b].push_back(a);
  }
  build(1);
  compute(1);
}

void changeCost(int v, int c1, int c2) {
  dp1[v] -= cost1[v];
  dp2[v] -= cost2[v];

  cost1[v] = c1;
  cost2[v] = c2;

  dp1[v] += cost1[v];
  dp2[v] += cost2[v];


  updVertex(v);

  update(v);

}

int eval() {
  return min(dp1[0], dp2[0]);
}

int cat(int v) {
  changeCost(v, 0, INF);
  return eval();
}

int dog(int v) {
  changeCost(v, INF, 0);
  return eval();
}


int neighbor(int v) {
  changeCost(v, 0, 0);
  return eval();

}

Compilation message

catdog.cpp: In function 'D get(int, int, int, int, int)':
catdog.cpp:74:5: warning: variable 'z' set but not used [-Wunused-but-set-variable]
   74 |   D z = x + y;
      |     ^
catdog.cpp: In function 'void update(int)':
catdog.cpp:166:9: warning: unused variable 'i1' [-Wunused-variable]
  166 |     int i1 = getdp1(theindex[members[color[node]][0]], theindex[members[color[node]].back()]), i2 = getdp2(theindex[members[color[node]][0]], theindex[members[color[node]].back()]);
      |         ^~
catdog.cpp:166:96: warning: unused variable 'i2' [-Wunused-variable]
  166 |     int i1 = getdp1(theindex[members[color[node]][0]], theindex[members[color[node]].back()]), i2 = getdp2(theindex[members[color[node]][0]], theindex[members[color[node]].back()]);
      |                                                                                                ^~
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 5008 KB Output is correct
2 Correct 3 ms 4940 KB Output is correct
3 Correct 3 ms 5068 KB Output is correct
4 Correct 3 ms 5016 KB Output is correct
5 Correct 3 ms 5012 KB Output is correct
6 Correct 3 ms 5068 KB Output is correct
7 Correct 3 ms 5068 KB Output is correct
8 Correct 3 ms 5068 KB Output is correct
9 Correct 3 ms 5068 KB Output is correct
10 Correct 3 ms 4940 KB Output is correct
11 Correct 4 ms 5008 KB Output is correct
12 Correct 3 ms 5068 KB Output is correct
13 Correct 3 ms 5012 KB Output is correct
14 Correct 3 ms 5068 KB Output is correct
15 Correct 2 ms 4940 KB Output is correct
16 Correct 3 ms 5012 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 5008 KB Output is correct
2 Correct 3 ms 4940 KB Output is correct
3 Correct 3 ms 5068 KB Output is correct
4 Correct 3 ms 5016 KB Output is correct
5 Correct 3 ms 5012 KB Output is correct
6 Correct 3 ms 5068 KB Output is correct
7 Correct 3 ms 5068 KB Output is correct
8 Correct 3 ms 5068 KB Output is correct
9 Correct 3 ms 5068 KB Output is correct
10 Correct 3 ms 4940 KB Output is correct
11 Correct 4 ms 5008 KB Output is correct
12 Correct 3 ms 5068 KB Output is correct
13 Correct 3 ms 5012 KB Output is correct
14 Correct 3 ms 5068 KB Output is correct
15 Correct 2 ms 4940 KB Output is correct
16 Correct 3 ms 5012 KB Output is correct
17 Correct 8 ms 5196 KB Output is correct
18 Correct 7 ms 5196 KB Output is correct
19 Correct 8 ms 5196 KB Output is correct
20 Correct 4 ms 5068 KB Output is correct
21 Correct 5 ms 5016 KB Output is correct
22 Correct 5 ms 5012 KB Output is correct
23 Correct 9 ms 5148 KB Output is correct
24 Correct 8 ms 5196 KB Output is correct
25 Correct 7 ms 5068 KB Output is correct
26 Correct 4 ms 5068 KB Output is correct
27 Correct 4 ms 5060 KB Output is correct
28 Correct 4 ms 5140 KB Output is correct
29 Correct 8 ms 5196 KB Output is correct
30 Correct 4 ms 5068 KB Output is correct
31 Correct 3 ms 5196 KB Output is correct
32 Correct 5 ms 5016 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 5008 KB Output is correct
2 Correct 3 ms 4940 KB Output is correct
3 Correct 3 ms 5068 KB Output is correct
4 Correct 3 ms 5016 KB Output is correct
5 Correct 3 ms 5012 KB Output is correct
6 Correct 3 ms 5068 KB Output is correct
7 Correct 3 ms 5068 KB Output is correct
8 Correct 3 ms 5068 KB Output is correct
9 Correct 3 ms 5068 KB Output is correct
10 Correct 3 ms 4940 KB Output is correct
11 Correct 4 ms 5008 KB Output is correct
12 Correct 3 ms 5068 KB Output is correct
13 Correct 3 ms 5012 KB Output is correct
14 Correct 3 ms 5068 KB Output is correct
15 Correct 2 ms 4940 KB Output is correct
16 Correct 3 ms 5012 KB Output is correct
17 Correct 8 ms 5196 KB Output is correct
18 Correct 7 ms 5196 KB Output is correct
19 Correct 8 ms 5196 KB Output is correct
20 Correct 4 ms 5068 KB Output is correct
21 Correct 5 ms 5016 KB Output is correct
22 Correct 5 ms 5012 KB Output is correct
23 Correct 9 ms 5148 KB Output is correct
24 Correct 8 ms 5196 KB Output is correct
25 Correct 7 ms 5068 KB Output is correct
26 Correct 4 ms 5068 KB Output is correct
27 Correct 4 ms 5060 KB Output is correct
28 Correct 4 ms 5140 KB Output is correct
29 Correct 8 ms 5196 KB Output is correct
30 Correct 4 ms 5068 KB Output is correct
31 Correct 3 ms 5196 KB Output is correct
32 Correct 5 ms 5016 KB Output is correct
33 Correct 1182 ms 14752 KB Output is correct
34 Correct 288 ms 14992 KB Output is correct
35 Correct 1037 ms 12548 KB Output is correct
36 Correct 1661 ms 22280 KB Output is correct
37 Correct 22 ms 9784 KB Output is correct
38 Correct 1798 ms 23480 KB Output is correct
39 Correct 1641 ms 23496 KB Output is correct
40 Correct 1661 ms 23556 KB Output is correct
41 Correct 1788 ms 23488 KB Output is correct
42 Correct 1645 ms 23588 KB Output is correct
43 Correct 1705 ms 23496 KB Output is correct
44 Correct 1689 ms 23500 KB Output is correct
45 Correct 1894 ms 23520 KB Output is correct
46 Correct 1784 ms 23496 KB Output is correct
47 Correct 1733 ms 23488 KB Output is correct
48 Correct 436 ms 21048 KB Output is correct
49 Correct 457 ms 23560 KB Output is correct
50 Correct 171 ms 9320 KB Output is correct
51 Correct 189 ms 12896 KB Output is correct
52 Correct 129 ms 9016 KB Output is correct
53 Correct 758 ms 21780 KB Output is correct
54 Correct 558 ms 12972 KB Output is correct
55 Correct 1498 ms 19824 KB Output is correct
56 Correct 951 ms 13892 KB Output is correct
57 Correct 1221 ms 21444 KB Output is correct
58 Correct 56 ms 13116 KB Output is correct
59 Correct 170 ms 11212 KB Output is correct
60 Correct 433 ms 22212 KB Output is correct
61 Correct 559 ms 22784 KB Output is correct
62 Correct 252 ms 19964 KB Output is correct
63 Correct 939 ms 16808 KB Output is correct
64 Correct 1312 ms 19544 KB Output is correct
65 Correct 1471 ms 28432 KB Output is correct
66 Correct 1179 ms 10828 KB Output is correct
67 Correct 2115 ms 23140 KB Output is correct
68 Execution timed out 3062 ms 28328 KB Time limit exceeded
69 Halted 0 ms 0 KB -