Submission #496672

# Submission time Handle Problem Language Result Execution time Memory
496672 2021-12-21T19:23:25 Z PedroBigMan Ancient Books (IOI17_books) C++14
70 / 100
2000 ms 231188 KB
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "books.h"
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 


class ST
{
    public:
    ll N;
    
    class SV //seg value
    {
        public:
        ll a; 
        SV() {a=0LL;}
        SV(ll x) {a=x;}
        
        SV operator & (SV X) {SV ANS(a+X.a); return ANS;}
    };
      
    class LV //lazy value
    {
        public:
        ll a;
        LV() {a=0LL;}
        LV(ll x) {a=x;}
        
        LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
    };
    
    SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
    {
        SV X(p[c].a+(range[c].ss-range[c].ff+1)*lazy[c].a);
        return X;
    }
    
    SV neuts; LV neutl;
    
    vector<SV> p;
    vector<LV> lazy;
    vector<pl> range;
    
    ST() {N=0LL;}
    ST(vector<ll> arr)
    {
        N = (ll) 1<<(ll) ceil(log2(arr.size()));
        REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
        REP(i,0,N) {p.pb(neuts);}
        REP(i,0,arr.size()) {SV X(arr[i]); p.pb(X); range[i+N]=mp(i,i);}
        REP(i,arr.size(),N) {p.pb(neuts); range[i+N]=mp(i,i);}
        ll cur = N-1;
        while(cur>0)
        {
            p[cur]=p[2*cur]&p[2*cur+1];
            range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
            cur--;
        }
        REP(i,0,2*N) {lazy.pb(neutl);}
    }
    
    void prop(ll c) //how lazy values propagate
    {
        lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
        lazy[c]=neutl;
    }
    
    SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return neuts;}
        if(x>=a && y<=b) {return upval(c);}
        prop(c);
		p[c]=upval(2*c)&upval(2*c+1);
        SV ans = query(a,b,2*c)&query(a,b,2*c+1);
        return ans;
    }
    
    void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return ;}
        if(x>=a && y<=b) 
        {
            lazy[c]=s&lazy[c]; 
            return;
        }
		prop(c);
        update(s,a,b,2*c); update(s,a,b,2*c+1);
        p[c]=upval(2*c)&upval(2*c+1);
    }
};

vector<vector<ll> > CycleDecomp(vector<int> p) //cycle decomposition of permutation
{
	ll N = p.size(); vector<vector<ll> > ans; vector<ll> cur;
	vector<bool> visited; REP(i,0,N) {visited.pb(false);} 
	ll node;
	REP(i,0,N)
	{
		if(visited[i]) {continue;}
		node=i; cur.pb(node); node=p[node];
		while(node!=i)
		{
			cur.pb(node); node=p[node];
		}
		REP(i,0,cur.size()) {visited[cur[i]]=true;}
		ans.pb(cur);
		cur.clear();
	}
	return ans;
}

class WDiGraph
{
    public:
    ll N;
    vector<vector<pl> > adj; 
    vector<bool> visited;
    vector<bool> pr;
	
    WDiGraph(vector<vector<pl> > ad)
    {
        adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false); pr.pb(false);}
    }
    
    vector<ll> Djikstra(ll s)
    {
        vector<ll> d; REP(i,0,N) {d.pb(INF);}
        d[s]=0;
        priority_queue<pl> q;
        q.push(mp(0,s));
        ll cur;
        while(!q.empty())
        {
            cur=q.top().ss; q.pop();
            if(pr[cur]) {continue;}
            pr[cur]=true; 
            REP(i,0,adj[cur].size())
            {
                if(d[adj[cur][i].ff]>d[cur]+adj[cur][i].ss)
                {
                    d[adj[cur][i].ff]=d[cur]+adj[cur][i].ss;
                    q.push(mp(-d[adj[cur][i].ff],adj[cur][i].ff));
                }
            }
        }
        return d;
    }
};

ll minimum_walk(vector<int> p, int s) 
{
	ll N = p.size();
	vector<vector<ll> > C = CycleDecomp(p);
	vector<pl> range;
	REP(i,0,C.size()) {range.pb({*min_element(whole(C[i])),*max_element(whole(C[i]))});}
	vector<ll> xx; VV(xx,N-1,0); ST S(xx);
	REP(i,0,range.size()) {if(range[i].ff==range[i].ss) {continue;} S.update(1,range[i].ff,range[i].ss-1);}
	vector<bool> in; VV(in,N-1,false);
	REP(i,0,N-1) {if(S.query(i,i).a>0) {in[i]=true;}}
	ll l=0,r=N-2; 
	while(l<s && !in[l]) {l++;}
	while(r>=s && !in[r]) {r--;}
	ll ans=0LL;
	REP(i,l,r+1) {if(!in[i]) {ans+=2LL;}}
	REP(i,0,N) {ans+=((ll) (abs(p[i]-i)));}
	ll T=s; while(T<N-1 && in[T]) {T++;} 
	ll SS;
	REP(i,0,C.size()) {sort(whole(C[i]));}
	vector<vector<pl> > adj; VV(adj,C.size(),{});
	vector<ll> rep; VV(rep,N,-1); REP(i,0,C.size()) {REP(j,0,C[i].size()) {rep[C[i][j]]=i;}}
	SS=rep[s]; T=rep[T];
	vector<ll>::iterator it;
	REP(i,0,N-1) {adj[rep[i]].pb({rep[i+1],1LL}); adj[rep[i+1]].pb({rep[i],1LL});} 
	if(s==0) {return ans;}
	REP(i,0,C.size())
	{
		REP(j,i+1,C.size())
		{
			it = lower_bound(whole(C[j]),range[i].ff);
			if(it==C[j].end() || (*it)>range[i].ss) {continue;}
			it = lower_bound(whole(C[i]),range[j].ff);
			if(it==C[i].end() || (*it)>range[j].ss) {continue;}
			if(range[j].ff<range[i].ff || range[j].ss>range[i].ss) {adj[i].pb({j,0LL});}
			if(range[i].ff<range[j].ff || range[i].ss>range[j].ss) {adj[j].pb({i,0LL});}
		}
	}
	WDiGraph G(adj); vector<ll> d = G.Djikstra(SS); ans+=2LL*d[T];
	return ans;
}

Compilation message

books.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    5 | #pragma GCC optimization ("O3")
      | 
books.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 1 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 216 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 1 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 216 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 332 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 460 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 332 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 1 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 216 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 332 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 460 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 332 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 460 KB Output is correct
30 Correct 508 ms 162932 KB Output is correct
31 Correct 507 ms 148320 KB Output is correct
32 Correct 537 ms 231188 KB Output is correct
33 Correct 579 ms 200276 KB Output is correct
34 Correct 587 ms 200184 KB Output is correct
35 Correct 582 ms 187132 KB Output is correct
36 Correct 524 ms 162140 KB Output is correct
37 Correct 462 ms 144764 KB Output is correct
38 Correct 453 ms 139400 KB Output is correct
39 Correct 444 ms 138716 KB Output is correct
40 Correct 459 ms 136464 KB Output is correct
41 Correct 491 ms 140012 KB Output is correct
42 Correct 480 ms 141548 KB Output is correct
43 Correct 620 ms 203244 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 588 KB Output is correct
2 Correct 2 ms 588 KB Output is correct
3 Correct 2 ms 588 KB Output is correct
4 Correct 2 ms 588 KB Output is correct
5 Correct 2 ms 588 KB Output is correct
6 Correct 2 ms 588 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 3 ms 588 KB Output is correct
9 Correct 2 ms 588 KB Output is correct
10 Correct 2 ms 588 KB Output is correct
11 Correct 2 ms 460 KB Output is correct
12 Correct 2 ms 460 KB Output is correct
13 Correct 1 ms 460 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 1 ms 460 KB Output is correct
16 Correct 1 ms 460 KB Output is correct
17 Correct 2 ms 588 KB Output is correct
18 Correct 3 ms 588 KB Output is correct
19 Correct 2 ms 460 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 1 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 216 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 332 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 460 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 332 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 460 KB Output is correct
30 Correct 508 ms 162932 KB Output is correct
31 Correct 507 ms 148320 KB Output is correct
32 Correct 537 ms 231188 KB Output is correct
33 Correct 579 ms 200276 KB Output is correct
34 Correct 587 ms 200184 KB Output is correct
35 Correct 582 ms 187132 KB Output is correct
36 Correct 524 ms 162140 KB Output is correct
37 Correct 462 ms 144764 KB Output is correct
38 Correct 453 ms 139400 KB Output is correct
39 Correct 444 ms 138716 KB Output is correct
40 Correct 459 ms 136464 KB Output is correct
41 Correct 491 ms 140012 KB Output is correct
42 Correct 480 ms 141548 KB Output is correct
43 Correct 620 ms 203244 KB Output is correct
44 Correct 3 ms 588 KB Output is correct
45 Correct 2 ms 588 KB Output is correct
46 Correct 2 ms 588 KB Output is correct
47 Correct 2 ms 588 KB Output is correct
48 Correct 2 ms 588 KB Output is correct
49 Correct 2 ms 588 KB Output is correct
50 Correct 3 ms 588 KB Output is correct
51 Correct 3 ms 588 KB Output is correct
52 Correct 2 ms 588 KB Output is correct
53 Correct 2 ms 588 KB Output is correct
54 Correct 2 ms 460 KB Output is correct
55 Correct 2 ms 460 KB Output is correct
56 Correct 1 ms 460 KB Output is correct
57 Correct 1 ms 460 KB Output is correct
58 Correct 1 ms 460 KB Output is correct
59 Correct 1 ms 460 KB Output is correct
60 Correct 2 ms 588 KB Output is correct
61 Correct 3 ms 588 KB Output is correct
62 Correct 2 ms 460 KB Output is correct
63 Correct 1 ms 460 KB Output is correct
64 Execution timed out 2078 ms 205580 KB Time limit exceeded
65 Halted 0 ms 0 KB -