Submission #495640

# Submission time Handle Problem Language Result Execution time Memory
495640 2021-12-19T16:55:53 Z PedroBigMan Fountain Parks (IOI21_parks) C++17
5 / 100
1267 ms 183388 KB
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "parks.h"
using namespace std;
typedef int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}}

class Graph
{
    public:
    ll N;
    vector<vector<ll> > adj; 
    vector<ll> visited; //for DFS/BFS
    vector<vector<ll> > dfs_tree;
    
    Graph() {ll N=0LL;}
    
    Graph(vector<vector<ll> > ad)
    {
        adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false);}
		VV(dfs_tree,N,{});
    }
    
    void Reset()
    {
        REP(i,0,N) {visited[i]=false;}
    }
    
    void DFS_Tree(ll s)
    {
        if(visited[s]) {return;}
        visited[s]=true;
        REP(i,0,adj[s].size())
        {
            if(!visited[adj[s][i]]) {dfs_tree[s].pb(adj[s][i]); dfs_tree[adj[s][i]].pb(s); DFS_Tree(adj[s][i]);}
        }
        return;
    }
};

class DiGraph
{
    public:
    ll N;
    vector<vector<ll> > adj; 
    vector<bool> visited;
    vector<ll> current; //for CC
    vector<ll> SCC; //Attributes a number to each node
    vector<vector<ll> > adjK; //reverse graph, for Kosaraju
    
    DiGraph(vector<vector<ll> > ad)
    {
        adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false); SCC.pb(-1LL);}
        vector<ll> xx; REP(i,0,N) {adjK.pb(xx);}
        REP(i,0,adj.size())
        {
            REP(j,0,adj[i].size()) {adjK[adj[i][j]].pb(i);}
        }
    }
    
    void Reset()
    {
        REP(i,0,N) {visited[i]=false;}
        current.clear();
    }
    
	void DFS(ll s) 
    {
        if(visited[s]) {return;}
        visited[s]=true;
        REP(i,0,adj[s].size())
        {
            if(!visited[adj[s][i]]) {DFS(adj[s][i]);}
        }
        current.pb(s); //only needed for Kosaraju
        return;
    }
	
    void DFSK(ll s) 
    {
        if(visited[s]) {return;}
        visited[s]=true;
        REP(i,0,adjK[s].size())
        {
            if(!visited[adjK[s][i]]) {DFSK(adjK[s][i]);}
        }
        current.pb(s); //only needed for Kosaraju
        return;
    }
    
    void Kosaraju()
    {
        if(SCC[0]!=-1) {return;}
        Reset();
        REP(i,0,N) 
        {
            if(visited[i]) {continue;}
            DFS(i);
        }
        vector<ll> List=current;
        Reset();
        ll c=0LL;
        for(ll i=N-1LL;i>=0LL;i--)
        {
            ll node=List[i];
            if(visited[node]) {continue;}
            DFSK(node);
            REP(j,0,current.size()) {SCC[current[j]]=c;}
            c++;
            current.clear();
        }
    }
    
    DiGraph SCCGraph()
    {
        Kosaraju();
        set<pl> ed;
        REP(i,0,adj.size())
        {
            REP(j,0,adj[i].size())
            {
                ed.insert(mp(SCC[i],SCC[adj[i][j]]));
            }
        }
        vector<vector<ll> > a; vector<ll> xx;
        ll nscc=-INF; REP(i,0,N) {nscc=max(nscc,SCC[i]+1);}
        REP(i,0,nscc) {a.pb(xx);}
        set<pl>::iterator it=ed.begin();
        pl cur;
        while(it!=ed.end())
        {
            cur=*it;
            if(cur.ff!=cur.ss) {a[cur.ff].pb(cur.ss);}
            it++;
        }
        DiGraph ans(a);
        return ans;
    }
};

vector<bool> SAT2(ll N, vector<pl> a) //a[i] is j+1 if yes j, -j-1 if not j
{
    ll M=a.size();
    vector<vector<ll> > adj; vector<ll> xx; REP(i,0,2*N) {adj.pb(xx);}
    pl c;
    REP(i,0,M) 
    {
        if(a[i].ff==-a[i].ss) {continue;}
        c.ff = -a[i].ff; c.ss=a[i].ss;
        if(c.ff<0) {c.ff=2*(-c.ff)-1;}
        else {c.ff=2*c.ff-2;}
        if(c.ss<0) {c.ss=2*(-c.ss)-1;}
        else {c.ss=2*c.ss-2;}
        adj[c.ff].pb(c.ss);
        swap(a[i].ff,a[i].ss);
        c.ff = -a[i].ff; c.ss=a[i].ss;
        if(c.ff<0) {c.ff=2*(-c.ff)-1;}
        else {c.ff=2*c.ff-2;}
        if(c.ss<0) {c.ss=2*(-c.ss)-1;}
        else {c.ss=2*c.ss-2;}
        adj[c.ff].pb(c.ss);
    }
    DiGraph G(adj); G.Kosaraju();
    vector<bool> ans; REP(i,0,N) {if(G.SCC[2*i]==G.SCC[2*i+1]) {return ans;}}
    REP(i,0,N)
    {
        if(G.SCC[2*i]>G.SCC[2*i+1]) {ans.pb(true);}
        else {ans.pb(false);}
    }
    return ans;
}

ll construct_roads(vector<ll> x, vector<ll> y) 
{
   	ll N = x.size(); vector<vector<ll> > adj; VV(adj,N,{});
	if(N==1) {build({},{},{},{}); return 1;}
	vector<pair<pl,ll> > p; REP(i,0,N) {p.pb({{x[i],y[i]},i});} sort(whole(p));
	vector<pair<pl,ll> >::iterator it; ll nei;
	REP(i,0,N)
	{
		it=lower_bound(whole(p),(pair<pl,ll>){{x[i]-2,y[i]},0}); 
		if(it!=p.end())
		{
			nei=it->ss;
			if(it->ff==(pl){x[i]-2,y[i]}) {adj[i].pb(nei); adj[nei].pb(i);}	
		}
		it=lower_bound(whole(p),(pair<pl,ll>){{x[i]+2,y[i]},0}); 
		if(it!=p.end())
		{
			nei=it->ss;
			if(it->ff==(pl){x[i]+2,y[i]}) {adj[i].pb(nei); adj[nei].pb(i);}	
		}
		it=lower_bound(whole(p),(pair<pl,ll>){{x[i],y[i]-2},0}); 
		if(it!=p.end())
		{
			nei=it->ss;
			if(it->ff==(pl){x[i],y[i]-2}) {adj[i].pb(nei); adj[nei].pb(i);}	
		}
		it=lower_bound(whole(p),(pair<pl,ll>){{x[i],y[i]+2},0}); 
		if(it!=p.end())
		{
			nei=it->ss;
			if(it->ff==(pl){x[i],y[i]+2}) {adj[i].pb(nei); adj[nei].pb(i);}	
		}
	}
	Graph G(adj); G.Reset(); G.DFS_Tree(0);
	vector<vector<ll> > tree = G.dfs_tree;
	REP(i,0,N) {if(tree[i].size()==0) {return 0;}}
	vector<ll> u,v; 
	REP(i,0,N)
	{
		REP(j,0,tree[i].size()) {if(i>tree[i][j]) {continue;} u.pb(i); v.pb(tree[i][j]);}
	}
	REP(i,0,N-1) {if((pl){x[u[i]],y[u[i]]}>(pl){x[v[i]],y[v[i]]}) {swap(u[i],v[i]);}}
	map<pair<pl,pl>,ll> m;
	REP(i,0,N-1)
	{
		m[{{x[u[i]],y[u[i]]},{x[v[i]],y[v[i]]}}]=i;
		m[{{x[v[i]],y[v[i]]},{x[u[i]],y[u[i]]}}]=i;
	}
	vector<pl> sat;
	REP(i,0,N-1)
	{
		if(y[u[i]]!=y[v[i]]) {continue;}
		if(m.find({{x[u[i]],y[u[i]]-2},{x[v[i]],y[v[i]]-2}})==m.end()) {continue;}
		ll ind = m[{{x[u[i]],y[u[i]]-2},{x[v[i]],y[v[i]]-2}}];
		//either i true or ind false
		sat.pb({i+1,-ind-1});
	}
	REP(i,0,N-1)
	{
		if(x[u[i]]!=x[v[i]]) {continue;}
		if(m.find({{x[u[i]]-2,y[u[i]]},{x[v[i]]-2,y[v[i]]}})==m.end()) {continue;}
		ll ind = m[{{x[u[i]]-2,y[u[i]]},{x[v[i]]-2,y[v[i]]}}];
		//either i true or ind false
		sat.pb({i+1,-ind-1});
	}
	REP(i,0,N-1)
	{
		if(y[u[i]]!=y[v[i]]) {continue;}
		
		if(m.find({{x[u[i]],y[u[i]]},{x[u[i]],y[u[i]]+2}})!=m.end()) 
		{ll ind = m[{{x[u[i]],y[u[i]]},{x[u[i]],y[u[i]]+2}}]; sat.pb({-i-1,-ind-1});}
		
		if(m.find({{x[u[i]],y[u[i]]},{x[u[i]],y[u[i]]-2}})==m.end()) 
		{ll ind = m[{{x[u[i]],y[u[i]]},{x[u[i]],y[u[i]]-2}}]; sat.pb({i+1,-ind-1});}
		
		if(m.find({{x[v[i]],y[v[i]]},{x[v[i]],y[v[i]]+2}})==m.end()) 
		{ll ind = m[{{x[v[i]],y[v[i]]},{x[v[i]],y[v[i]]+2}}]; sat.pb({-i-1,ind+1});}
		
		if(m.find({{x[v[i]],y[v[i]]},{x[v[i]],y[v[i]]-2}})==m.end()) 
		{ll ind = m[{{x[v[i]],y[v[i]]},{x[v[i]],y[v[i]]-2}}]; sat.pb({i+1,ind+1});}
	}
	vector<bool> ans = SAT2(N-1,sat);
	if(ans.size()==0) {return 0;}
	vector<ll> a,b; 
	REP(i,0,N-1)
	{
		if(x[u[i]]==x[v[i]]) //vertical
		{
			b.pb(min(y[u[i]],y[v[i]])+1);
			if(ans[i])
			{
				a.pb(x[u[i]]+1);
			}
			else
			{
				a.pb(x[u[i]]-1);
			}
		}
		else
		{
			a.pb(min(x[u[i]],x[v[i]])+1);
			if(ans[i])
			{
				b.pb(y[u[i]]+1);
			}
			else
			{
				b.pb(y[u[i]]-1);
			}
		}
	}
	build(u,v,a,b);
	return 1;
}

Compilation message

parks.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    5 | #pragma GCC optimization ("O3")
      | 
parks.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
parks.cpp: In constructor 'Graph::Graph()':
parks.cpp:57:17: warning: unused variable 'N' [-Wunused-variable]
   57 |     Graph() {ll N=0LL;}
      |                 ^
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 276 ms 66864 KB Output is correct
10 Correct 17 ms 7052 KB Output is correct
11 Correct 97 ms 35896 KB Output is correct
12 Correct 26 ms 9752 KB Output is correct
13 Correct 33 ms 11524 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 2 ms 716 KB Output is correct
16 Correct 327 ms 66060 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 276 ms 66864 KB Output is correct
10 Correct 17 ms 7052 KB Output is correct
11 Correct 97 ms 35896 KB Output is correct
12 Correct 26 ms 9752 KB Output is correct
13 Correct 33 ms 11524 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 2 ms 716 KB Output is correct
16 Correct 327 ms 66060 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 268 KB Output is correct
20 Incorrect 1 ms 204 KB Tree @(3, 5) appears more than once: for edges on positions 1 and 2
21 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 276 ms 66864 KB Output is correct
10 Correct 17 ms 7052 KB Output is correct
11 Correct 97 ms 35896 KB Output is correct
12 Correct 26 ms 9752 KB Output is correct
13 Correct 33 ms 11524 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 2 ms 716 KB Output is correct
16 Correct 327 ms 66060 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 268 KB Output is correct
20 Incorrect 1 ms 204 KB Tree @(3, 5) appears more than once: for edges on positions 1 and 2
21 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 276 ms 66864 KB Output is correct
10 Correct 17 ms 7052 KB Output is correct
11 Correct 97 ms 35896 KB Output is correct
12 Correct 26 ms 9752 KB Output is correct
13 Correct 33 ms 11524 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 2 ms 716 KB Output is correct
16 Correct 327 ms 66060 KB Output is correct
17 Correct 0 ms 240 KB Output is correct
18 Correct 0 ms 292 KB Output is correct
19 Correct 0 ms 292 KB Output is correct
20 Correct 1267 ms 183388 KB Output is correct
21 Incorrect 1183 ms 153116 KB Tree @(99999, 100003) appears more than once: for edges on positions 17568 and 17569
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 276 ms 66864 KB Output is correct
10 Correct 17 ms 7052 KB Output is correct
11 Correct 97 ms 35896 KB Output is correct
12 Correct 26 ms 9752 KB Output is correct
13 Correct 33 ms 11524 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 2 ms 716 KB Output is correct
16 Correct 327 ms 66060 KB Output is correct
17 Incorrect 1052 ms 169040 KB Tree @(3, 100001) appears more than once: for edges on positions 80414 and 80415
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 276 ms 66864 KB Output is correct
10 Correct 17 ms 7052 KB Output is correct
11 Correct 97 ms 35896 KB Output is correct
12 Correct 26 ms 9752 KB Output is correct
13 Correct 33 ms 11524 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 2 ms 716 KB Output is correct
16 Correct 327 ms 66060 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 268 KB Output is correct
20 Incorrect 1 ms 204 KB Tree @(3, 5) appears more than once: for edges on positions 1 and 2
21 Halted 0 ms 0 KB -